• Title/Summary/Keyword: Porcine Satellite Cells

Search Result 10, Processing Time 0.018 seconds

The fibronectin concentration that optimally maintains porcine satellite cells

  • Jae Ho Han;Si Won Jang;Ye Rim Kim;Hoon Jang;Kwan Seob Shim;Hyun Woo Choi
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1889-1897
    • /
    • 2023
  • Objective: 'Cultured meat' has been suggested as means of solving the problems associated with overpopulation and gas emissions. Satellite cells are a major component in the production of cultured meat; however, these cells cannot be maintained in vitro over long periods. Fibronectin is a glycoprotein that affects biological processes such as cell adhesion, differentiation, and migration. Unfortunately, the characteristics of porcine satellite cells grown in a long-term culture when exposed to fibronectin-coated dishes are unknown. The objective of this study was to investigate the appropriate concentration of fibronectin coated dishes for proliferation and maintenance of porcine satellite cells at long-term culture. Methods: In this study, we isolated the satellite cells and fibroblast cells with pre-plating method. We next analyzed the cell doubling time, cell cycle, and rate of expressed paired box 7 (Pax7) and myogenic differentiation 1 (MyoD1) in porcine satellite cells cultured with 20 ㎍/mL of fibronectin-, gelatin-, and non-coated dishes at early and late passage. We then analyzed the proliferation of porcine satellite cells with various concentrations of mixed gelatin/fibronectin. We next determined the optimal concentration of fibronectin that would encourage proliferation and maintenance of porcine satellite cells in a long-term culture. Results: Doubling time was lowest when 20 ㎍/mL of fibronectin was used (as tested during an early and late passage). Levels of expressed Pax7 and MyoD1, assessed using immunocytochemistry, were highest in cells grown using fibronectin-coated dishes. The proliferation of gelatin/fibronectin mixed coatings had no significant effect on porcine satellite cells. The concentration of 5 ㎍/mL fibronectin coated dishes showed the lowest doubling time and maintained expression of Pax7. Conclusion: Fibronectin with 5㎍/mL effectively maintains porcine satellite cells, a discovery that will be of interest to those developing the next generation of artificial meats.

Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells

  • Li, Bo-jiang;Li, Ping-hua;Huang, Rui-hua;Sun, Wen-xing;Wang, Han;Li, Qi-fa;Chen, Jie;Wu, Wang-jun;Liu, Hong-lin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1171-1177
    • /
    • 2015
  • The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

2, 4-Thiazolidindion Induced Plasticity of Myoblast (C2C12) and Satellite Cells (Porcine) - A Comparative Study

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1115-1119
    • /
    • 2007
  • This study was conducted to determine the difference between satellite cells (porcine) and myoblasts (C2C12) in their differentiation under the influence of 2, 4-thiazolidindion. C2C12 myoblast cells and porcine satellite cells (isolated from 10 d old $Landrace{\times}Duroc$ piglets) were grown to absolute confluency. Post confluent cells (day 0) were further exposed to adipogenic induction medium along with 2, 4-thiazolidindion ($8{\mu}M$) for 2 d. Thereafter, cells were exposed to 2, 4-thiazolidindion alone every 2 d till day 10 and analysed. The control was cultured in differentiation medium without any treatment. Increased (p<0.05) expression of transcriptional factors i.e. C/EBP-${\alpha}$ and PPAR-${\gamma}$ and transition of cells to adipocyte morphology was noticed from 2 d and 4 d onwards in satellite cells (Porcine) and myoblasts (C2C12) respectively. Myogenesis was observed to be suppressed completely in case of satellite cells compared to myoblasts in response to 2, 4-thiazolidindion. Pax-7 (transcriptional factor) appeared as a sole entity to satellite cells only, as it was not identified in case of myoblasts. Although both the cells were converting to adipoblasts, the degree of their conversion was different in response to 2, 4-thiazolidindion. Therefore, the hypothesis that satellite cells contribute various domains to the growing myoblasts appeared obscured and found to be dependent on the proliferative energy/or degree of fusion. However, it revealed satellite cells as currency to myoblasts/muscle.

Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells

  • Jeongeun, Lee;Jinryoung, Park;Hosung, Choe;Kwanseob, Shim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1132-1143
    • /
    • 2022
  • Insects are a valuable natural source that can produce a variety of bioactive compounds due to their increasing species diversity. CopA3 is an antimicrobial peptide derived from Copris tripartitus (i.e., the dung beetle). It is known to increase the proliferation of colonic epithelial and neuronal stem cells by regulating cell cycle. This research hypothesized that CopA3 can promote the proliferation of porcine muscle satellite cells (MSCs). The effects of CopA3 on porcine MSCs, which are important for muscle growth and regeneration, remain unclear. Here, we investigated the effects of CopA3 on porcine MSCs. According to viability results, we designed four groups: control (without CopA3) and three treatment groups (treated with 5,10, and 25 ㎍/mL of CopA3). At a CopA3 concentration of 5 ㎍/mL and 10 ㎍/mL, the proliferation of MSCs increased more than that observed in the control group. Furthermore, compared to that in the control, CopA3 treatment increased the S phase but decreased the G0/G1 phase ratio. Additionally, early and late apoptotic cells were found to be decreased in the 5 ㎍/mL group. The expressions of the myogenesis-related transcription factor PAX7 and MYOD proteins were significantly upregulated in the 5 ㎍/mL and 10 ㎍/mL groups, whereas the MYOG protein remained undetected in all group. This study suggested that CopA3 promotes muscle cell proliferation by regulating the cell cycle of MSCs and can regulate the activity of MSCs by increasing the expressions of PAX7 and MYOD.

Comparative Differential Expressions of Porcine Satellite Cell during Adipogenesis, Myogenesis, and Osteoblastogenesis

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2013
  • Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myogenic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and $PPAR{\gamma}$ increased in rosiglitazone treatment. In study 3, we examined the effect of dexamethasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and $PPAR{\gamma}$ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblastogenic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.

Comparison of Gene Expression Levels of Porcine Satellite Cells from Postnatal Muscle Tissue during Differentiation

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.219-224
    • /
    • 2013
  • Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90~100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson's, oil red O, and Alizarin red staining respectively. We performed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteoblast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were induced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strategies for augmenting meat quality.

High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR

  • Yue, Tao;Yin, Jingdong;Li, Fengna;Li, Defa;Du, Min
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.140-145
    • /
    • 2010
  • The present study investigated whether the mammalian target of rapamycin (mTOR) signal pathway is involved in the regulation of high glucose-induced intramuscular adipogenesis in porcine muscle satellite cells. High glucose (25 mM) dramatically increased intracellular lipid accumulation in cells during the 10-day adipogenic differentiation period. The expressions of CCAAT/enhancer binding protein-$\alpha$ (C/EBP-$\alpha$) and fatty acid synthase (FAS) protein were gradually enhanced during the 10-day duration while mTOR phosphorylation and sterol-regulatory- element-binding protein (SREBP)-1c protein were induced on day 4. Moreover, inhibition of mTOR activity by rapamycin resulted in a reduction of SREBP-1c protein expression and adipogenesis in cells. Collectively, our findings suggest that the adipogenic differentiation of porcine muscle satellite cells and a succeeding extensive adipogenesis, which is triggered by high glucose, is initiated by the mTOR signal pathway through the activation of SREBP-1c protein. This process is previously uncharacterized and suggests a cellular mechanism may be involved in ectopic lipid deposition in skeletal muscle during type 2 diabetes.

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Effect of Conjugated Linoleic Acid(CLA) on Proliferation and Differentiation of Porcine Adipocyte and Muscle Cell (Conjugated Linoleic Acid(CLA)가 돼지 지방세포와 근육세포의 증식과 분화에 미치는 영향)

  • Chung, C.S.;Kim, H.R.;Kang, J.N.;Kim, N.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • The current study was undertaken to determine the effect of conjugated linoleic acid(CLA) isomers, cis-9, cis-11(c9c11), cis-9, trans-11(c9t11), trans-9, trans-11(t9t11), trans-10, cis-12(t10c12) on differentiation of pig preadipocytes and myogenic satellite cells during culture. Cells were isolated from new born pigs. The t10c12 isomer decreased differentiation of pig preadipocytes(92%), but not that of myogenic cells. The t9t11 isomer decreased differentiation of preadipocytes(14%) and increased that of myogenic cells (26%). No other CLA isomers affected differentiation of preadipocytes or myogenic cells. The effects of CLA on proliferation of preadipocytes and myogenic cells were small, compared to the effects on differentiation. These results suggest that CLA isomers have different effects on differentiaton of pig preadipocytes and myogenic cells.

Effects of Anabolic Steroids of Pork on Proliferation and Differentiation of Myogenic Satellite Cell (돼지 고기의 아나볼릭 스테로이드가 Myogenic Satellite Cell의 증식과 분화에 미치는 영향)

  • Lee, Dong-Mok;Lee, Ki-Ho;Cheon, Yong-Pil;Chun, Tae-Hoon;Choi, In-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.842-850
    • /
    • 2010
  • Sex steroids are known to be involved in skeletal muscle development (anabolic effect) and are frequently used in medicines. It has been known that pork contains a variety of steroids that are mainly synthesized in the gonads (testis and ovary). Thus, the present study was conducted to evaluate the effects of anabolic steroids of pork on the proliferation and differentiation of myogenic satellite cells (MSC). Three different methods (M1, M2, and M3) were developed for the isolation and purification of steroids from porcine tissues. Among three extraction methods that we developed, M3 was the best method with respect to the quantities of steroids and the induction of MSC proliferation. Hormonal analysis showed that the steroid hormone levels were the highest in muscle and fat of intact male than those of castrated males and females. In addition, the highest serum levels of nandrolone and testosterone were detected in intact males, whereas estrone and $17{\beta}$-estradiol levels were similar in the entire experimental serum samples. Expression of androgen receptor (AR), myoD, desmin, and myogenin in bovine muscle cells were significantly up-regulated by the treatment of steroid extracts. The highest increas of myogenin and AR mRNA abundance were observed in the MSCs treated with M3 extract (p<0.001). Altogether, the present research showed the positive effect of steroids on MSC proliferation and differentiation in vitro. These results would certainly imply a beneficial effect of pork consumption on human muscle development.