• Title/Summary/Keyword: Porcelain Insulator

Search Result 140, Processing Time 0.02 seconds

Estimation of EPDM Insulator in Distribution Line Using PO and SO Measurement (PD 및 SD를 이용한 배전용 EPDM애자의 절연성평가)

  • Lim, Jang-Seob;Song, Il-Keun;Lee, Hyung-Gu;Cheon, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.973-975
    • /
    • 1998
  • Many researchers make efforts to develop an effective material with anti-degradation property. Specially, the porcelain type insulator is required exchanging to polymer insulator according to the environmental consideration. In this paper, we have developed the estimation system using the PD & SD testing. Those approach has been very successful applied to the various practical insulator.

  • PDF

Estimation of Tracking Properties in the EPDM (EPDM애자의 트래킹성성 평가)

  • 임장섭;김덕근;정우성;오수홍
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.218-221
    • /
    • 1999
  • Many researchers make efforts to develope an effective material with anti-tracking property. Specially, the porcelain type insulator is required exchanging to polymer insulator according to the environmental consideration. In this paper, we have developed the estimation system using the translated IEC-60587 test for the application of actual insulator. Those approach has been very successful applied to the various practical insulator.

  • PDF

Thermal Impact Characteristics by Forest Fire on Porcelain Insulators for Transmission Lines

  • Lee, Won-Kyo;Choi, In-Hyuk;Choi, Jong-Kee;Hwang, Kab-Cheol;Han, Se-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2008
  • In this study the thermal impact characteristics by forest fire are extensively investigated using temperature controlled ovens. The test conditions for thermal impact damage are simulated according to the characteristics of natural forest fire. The test pieces are suspension porcelain insulators made by KRI in 2005 for transmission lines. In the thermal impact cycle tests with $300\;^{\circ}C$ thermal impact gradient (-70 to $230\;^{\circ}C$), cycling in 10 minute periods, no critical failures occurred in the test samples even with long cycle times. But in tests with thermal impact gradient from room temperature to $200-600\;^{\circ}C$, cycling in 10 to 30 minute periods, there were critical failures of the porcelain insulators according to the thermal impact gradient and quenching method. In the case of thermal impact by forest fire, it was found of that duration time is more important than the cycling time, and the initiation temperature of porcelain insulator failures is about $300\;^{\circ}C$, in the case of water quenching, many cracks and fracture of the porcelain occurred. It was found that the thermal impact failure is closely related to the displacement in the cement by thermal stress as confirmed by simulation. It was estimated that the initiation displacement by the thermal impact of $300\;^{\circ}C$ is about 0.1 %. Above 1% displacement, it is expected that the most porcelain insulators would fail.

Characteristics of a Corona between a Wiring Clamp(Dead End Clamp) and a Porcelain Insulator Used in a 154[kV] Power Receptacle

  • Han, Un-Ki;Kim, Jong-Min;Bang, Sun-Bae;Kim, Han-Sang;Choi, Hyeong-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.57-63
    • /
    • 2007
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154[kV] dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in 154[kV] power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method(FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

Stress Simulation on Suspended Porcelain Insulators with Cement Displacement

  • Han S. W.;Cho H. G.;Park G. H.;Lee D. I.;Choi I. H;Kim T. Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • The experimental and simulation study of insulator failure by cement growth on suspended insulators (16,500kgf) for transmission line was discussed. To get more practical and analytic calculation results, the advanced program was used. This analysis tool was possible to calculate stress behaviors with mechanical loading when cement displacement happened. From simulation results, the. cement displacement changed with linear according to temperature. The shear stress was about $7 kgf/mm^2$ at $0.07\%$ displacement provided from $200^{\circ}C$, then it could be seen that the cement would be fractured even if $0.07\%$ displacement acted, because the cement had about $7-9 kgf/mm^2$ flexure strength. The curve patterns of shear stress with the increase of mechanical loading were changed at $0.02\%$ as a turning point, when the cement displacement was over $0.02\%$ the shear stresses decreased reversely with the increase of mechanical loading. From analysis on porcelain body it was known that there were enough margin to protect the fracture of porcelain body before the cement

Study on Performance and Aging Test of Porcelain Insulators for Transmission Line (송전용 자기재 애자의 성능평가 및 가속열화시험)

  • 한세원;조한구;박기호;이동일;최인혁
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.842-850
    • /
    • 2003
  • The suspension insulators are subjected to harsh environments in service for a long time. The long-term reliability of tile insulators is required for both mechanical and electrical performances. This study describes some basic performance tests and accelerated aging test by cool-heat cycling methods and thermal mechanical performance test methods on alumina porcelain insulators (new and aged) used for transmission line in KOREA. There was no fail in electrical and mechanical performance tests such as a high voltage strength, a flashover voltage, and an impact strength in all samples. But in the case of accelerating aging tests which have above 9$0^{\circ}C$ temperature gradient, fracture phenomena was happened by a thermal shock in tile aged sample(sample A) with low alumina porcelain body. It was indicated that sample A was more severely aged than other samples. According to results of HRB test and microstructural analysis, it was reasoned that insulator bodies with the matrix reinforced with alumina crystalline phase have advantages over the suppression of crack advance. And cool-heat aging and mechanical thermal ageing tests shows that a temperature gradient is more effective to accelerating than a cycling number.

Analysis on Damage of Porcelain Insulators Using AE Technique (AE기법을 이용한 자기애자의 손상 분석)

  • Choi, In-Hyuk;Shin, Koo-Yong;Lim, Yun-seog;Koo, Ja-Bin;Son, Ju-Am;Lim, Dae-Yeon;Oh, Tae-Keun;Yoon, Young-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.231-238
    • /
    • 2020
  • This paper investigates the soundness of porcelain insulators associated with the acoustic emission (AE) technique. The AE technique is a popular non-destructive method that measures and analyzes the burst energy that occurs mainly when a crack occurs in a high-frequency region. Typical AE methods require continuous monitoring with frequent sensor calibration. However, in this study, the AE technique excites a porcelain insulator using only an impact hammer, and it applies a high-pass filter to the signal frequency range measured only in the AE sensor by comparing the AE and the acceleration sensors. Next, the extracted time-domain signal is analyzed for the damage assessment. In normal signals, the duration is about 2ms, the area of the envelope is about 1,000, and the number of counts is about 20. In the damage signal, the duration exceeds 5ms, the area of the envelope is about 2,000, and the number of counts exceeds 40. In addition, various characteristics in the time and frequency domain for normal and damage cases are analyzed using the short-time Fourier transform (STFT). Based on the results of the STFT analysis, the maximum energy of a normal specimen is less than 0.02, while in the case of the damage specimen, it exceeds 0.02. The extracted high-frequency components can present dynamic behavior of crack regions and eigenmodes of the isolated insulator parts, but the presence, size, and distribution of cracks can be predicted indirectly. In this regard, the characteristics of the surface crack region were derived in this study.

Characteristic Analysis of Functional Films according to the Annealing Temperature (기능성 필름의 열처리 온도에 따른 특성 분석)

  • Shan, Bowen;Kang, Hyunil;Choi, Won Seok;Lee, Kyoung-Bok;Ma, Sanggyeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.53-56
    • /
    • 2016
  • Because of the low pollution resistance of the porcelain electrical insulator itself, in this work the anti-pollution performance of insulator was improved by using the functional coating. The ceramic substrates that components were same as the porcelain electrical insulator were used in this experiment. The functional films were coated on the ceramic substrate by using a spray coating method, and then the coated substrate were annealed under different coating condition such as natural curing and annealing temperature of $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$. Then, the contact angles of the coated surfaces were measured and the minimum angle ($8.3^{\circ}$) was obtained at $400^{\circ}C$. The anti-contamination properties were measured, revealing that as the contact angle decreased, the anti-contamination properties improved. The hardness and adhesion were small at the natural curing condition however the excellent mechanical properties were obtained under higher temperature annealing.

The Design and Aging Test of Polymer Insulator for Power Transmission and Distribution (송배전용 고분자 애자의 설계와 열화시험)

  • Lee, Un-Yong;Cho, Han-Gu;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.553-555
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. In this paper, the design trend and method polymer insulator are investigated and Aging test method is analysed to know life time of insulator.

  • PDF

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.