• Title/Summary/Keyword: Porcelain Clay Casting Method

Search Result 2, Processing Time 0.021 seconds

A Study of Iron Pot Casting and Bellows Technology (토제 거푸집 무쇠솥 주조와 불미기술 연구)

  • Yun, Yonghyun;Doh, Jungmann;Jeong, Yeongsang
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.4-23
    • /
    • 2020
  • The purpose of this study was to explore the diversity of Korea's iron casting technology and to examine various casting methods. The study involved a literature review, analysis of artifacts, local investigation of production tools and technology, and scientific analysis of casting and cast materials. Bellows technology, or Bulmi technology, is a form of iron casting technology that uses bellows to melt cast iron before the molten iron is poured into a clay cast. This technology, handed down only in Jeju Island, relies on use of a clay cast instead of the sand cast that is more common in mainland Korea. Casting methods for cast iron pots can be broadly divided into two: sand mold casting and porcelain casting. The former uses a sand cast made from mixing seokbire (clay mixed with soft stones), sand and clay, while the latter uses a clay cast, formed by mixing clay with rice straw and reed. The five steps in the sand mold casting method for iron pot are cast making, filling, melting iron into molten iron, pouring the molten iron into the cast mold, and refining the final product. The six steps in the porcelain clay casting method are cast making, cast firing, spreading jilmeok, melting iron into molten iron, pouring the molten iron, and refining the final product. The two casting methods differ in terms of materials, cast firing, and spreading of jilmeok. This study provided insight into Korea's unique iron casting technology by examining the scientific principles behind the materials and tools used in each stage of iron pot casting: collecting and kneading mud, producing a cast, biscuit firing, hwajeokmosal (building sand on the heated cast) and spreading jilmeok, drying and biyaljil (spreading jilmeok evenly on the cast), hapjang (combining two half-sized casts to make one complete cast), producing a smelting furnace, roasting twice, smelting, pouring molten iron into a cast, and refining the final product. Scientific analysis of the final product and materials involved in porcelain clay casting showed that the main components were mud and sand (SiO2, Al2O3, and Fe2O3). The release agent was found to be graphite, containing SiO2, Al2O3, Fe2O3, and K2O. The completed cast iron pot had the structure of white cast iron, comprised of cementite (Fe3C) and pearlite (a layered structure of ferrite and cementite).

Effect of Mullite Generation on the Strength Improvement of Porcelain (Mullite 생성이 도자기 강도개선에 미치는 영향)

  • Choi, Hyo-Sung;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.168-172
    • /
    • 2011
  • Alumina powder was added in a general porcelain (Backja) with clay, feldspar and quartz contents to promote the mullite ($3Al_2O_3{\cdot}2SiO_2$) generation in the porcelain. Low melting materials ($B_2O_3(450^{\circ}C)$, $MnO_3(940^{\circ}C)$, CuO($1080^{\circ}C$)) were doped at ~3 wt% to modify the sinterability of porcelain with a high alumina contents and promote the mullite generation. Green body was made by slip casting method with blended slurry and then, they were fired at $1280^{\circ}C$ for 1hr by a $2^{\circ}C/min$. Densifications of samples with high alumina contents (20~30 wt%) were impeded. As the doping contents of low melting materilas increased, the sinterability of samples was improved. The shrinkage rate and bulk density of samples were improved by doping with low melting materials. Mullite phase increased with increasing the low melting contents in the phase analyses. This means lots of alumina and quartz were transformed into mullite phase by low melting contents doping. In the results, high bending strength of samples with high alumina contents was accomplished by improving the densification and mullite generation in the porcelain.