• Title/Summary/Keyword: Population phase

Search Result 381, Processing Time 0.025 seconds

Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method (이산요소법을 이용한 보행류 해석 프로그램 개발)

  • Nam, Seong-Won;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF

Development of Algorithm for Passenger Flow Analysis based on DEM (DEM에 기초한 여객 유동 해석 알고리즘 개발)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.337-341
    • /
    • 2005
  • Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. In the new algorithm, there are many similarity between multi phase flow and passenger flow. The velocity component of 1st phase corresponds to the direction vector of cell, each particle to each passenger, volume fraction to population density and the momentum equation of particle to the walking velocity equation of passenger, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger, To verify the effectiveness of new algorithm, passenger flow analysis for simple railway station model is conducted. The results for passenger flow in the model station are satisfying qualitatively and quantitatively.

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

Analysis of Pedestrian Flow Characteristics in Subway Station (지하역사 기본 모델에 대한 여객 유동 특성 해석)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

Numerical Analysis on Passenger Flow for the Model of Railway Station (철도 역사 모델에 대한 여객 유동 해석)

  • Kwon, Hyeok-Bin;Cha, Chang-Hwan;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.387-391
    • /
    • 2006
  • Insight into behaviour of pedestrians as well as tools to assess passenger flow conditions are important in for instance planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

  • PDF

On efficient estimation of population mean under non-response

  • Bhushan, Shashi;Pandey, Abhay Pratap
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.11-25
    • /
    • 2019
  • The present paper utilizes auxiliary information to neutralize the effect of non-response for estimating the population mean. Improved ratio type estimators for population mean have been proposed and their properties are studied. These estimators are suggested for both single phase sampling and two phase sampling in presence of non-response. Empirical studies are conducted to validate the theoretical results and demonstrate the performance of the proposed estimators. The proposed estimators are shown to perform better than those used by Cochran (Sampling Techniques (3rd ed), John Wiley & Sons, 1977), Khare and Srivastava (In Proceedings-National Academy Science, India, Section A, 65, 195-203, 1995), Rao (Randomization Approach in Incomplete Data in Sample Surveys, Academic Press, 1983; Survey Methodology 12, 217-230, 1986), and Singh and Kumar (Australian & New Zealand Journal of Statistics, 50, 395-408, 2008; Statistical Papers, 51, 559-582, 2010) under the derived optimality condition. Suitable recommendations are put forward for survey practitioners.

Characteristics of and Prospect for Population Distribution in Korea (인구분산 및 이동의 특성과 전망)

  • 최진호
    • Korea journal of population studies
    • /
    • v.9 no.1
    • /
    • pp.32-40
    • /
    • 1986
  • The purpose of the paper is to examine the nature of population distribution during the past 25 years; to evaluate effect of population redistribution policies which have been adopted by the government; and to suggest desirable future policy directions. The distinctive features of population distribution during the period of 196O~85 can be summarized as progress of rapid urbanization, decrease of absolute number of rural population and heavy concentration of population in the Seoul metropolitan area which have resulted in population maldistribution among regions. The problem of population concentration in the selected one or two large urban centers was first recognized by the government as early as in 1964. Since then numerous policy measures have been adopted to reduce the population concentration into the Seoul metropolitan area and thus to guide a sound population redistribution among regions. The overall assessment of various policies on population redistribution, however, revealed that the effect of the policy efforts has not been great as they originally anticipated. Various reasons can be cited for the failure of the past policies. Among them the followings were frequently mentioned; lack of integration among policy measures; weak linkage between relocation and accommodation; and non-existence of single authority for overall implementation of the polices. Based on the past experiences the followings are suggested in pursuing future policies. First, the short-term objective or target should be clearly defined. Second, policy measures have to be designed to go with rather than against market forces. Third, indirect incentives or aids are more effective than direct controls or regulations. Fourth, local participation has to be secured in every phase of policy formulation and implementation.

  • PDF

An Improved Method for Constructing Confidence Interval of Median : Small Sample Case

  • Park, Sang-Gue;Choi, Ji-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.973-980
    • /
    • 2004
  • Phase I clinical trials are often pharmacologically oriented and usually attempt to find the best dose of drug to employ. However, other purposes like determination of sizes and types of side effects and toxicity and organ system involved are equally important. Estimation of treatment effects or side effects is usually ignored since it is usually based on too small sample, even though Phase II clinical trials would be designed based on the Phase I studies. Statistical methods for constructing the approximate confidence interval for population median in case of small sample are considered and an improved method is proposed. The proposed estimator is compared with current methods through simulation studies.

  • PDF

GENERAL FAMILIES OF CHAIN RATIO TYPE ESTIMATORS OF THE POPULATION MEAN WITH KNOWN COEFFICIENT OF VARIATION OF THE SECOND AUXILIARY VARIABLE IN TWO PHASE SAMPLING

  • Singh Housila P.;Singh Sarjinder;Kim, Jong-Min
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.377-395
    • /
    • 2006
  • In this paper we have suggested a family of chain estimators of the population mean $\bar{Y}$ of a study variate y using two auxiliary variates in two phase (double) sampling assuming that the coefficient of variation of the second auxiliary variable is known. It is well known that chain estimators are traditionally formulated when the population mean $\bar{X}_1$ of one of the two auxiliary variables, say $x_1$, is not known but the population mean $\bar{X}_2$ of the other auxiliary variate $x_2$ is available and $x_1$ has higher degree of positive correlation with the study variate y than $x_2$ has with y, $x_2$ being closely related to $x_1$. Here the classes are constructed when the population mean $\bar{X}_1\;of\;X_1$ is not known and the coefficient of variation $C_{x2}\;of\;X_2$ is known instead of population mean $\bar{X}_2$. Asymptotic expressions for the bias and mean square error (MSE) of the suggested family have been obtained. An asymptotic optimum estimator (AOE) is also identified with its MSE formula. The optimum sample sizes of the preliminary and final samples have been derived under a linear cost function. An empirical study has been carried out to show the superiority of the constructed estimator over others.

Recalibration Estimation for Unit Nonresponse at the Two Levels Auxiliary Information

  • Yum, Joon Keun;Son, Chang Kyoon;Jeung, Young Mee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.665-678
    • /
    • 2003
  • In this paper we suggest the new calibration estimator, which is called to the recalibration estimator, and its variance estimator using two-phase sampling technique according to the auxiliary information having strong correlation with the variable of interest under the unit nonresponse. In this unit nonresponse situation, an available information may exists at the level of whole population or the first-phase sample. The proposed recalibration estimator derives from the first and second phase weights respectively.