도시의 행정수요 측정과 도시경제 운영을 위해 주간활동인구를 파악해야 할 필요성이 증가하였다. 상주인구를 보완하는 개념으로서 센서스의 통근 통학 자료에 근거를 둔 주간인구가 활용되고 있으나 서비스 경제가 압도적인 서울과 같은 대도시의 주간활동인구 파악에는 한계가 있다. 본 연구에서는 도시의 주간활동인구를 파악하기 위한 개념으로서 유동인구를 제시하고 서울시 유동인구 조사의 방법을 소개하였으며 주요 분석결과를 제시하였다. 유동인구 조사자료의 분석 결과 센서스 기반 주간인구에서는 파악할 수 없었던 시간대별, 공간대별 도시 주간활동인구의 분포를 밝힐 수 있었다. 끝으로 유동인구 조사자료를 통해 파악한 주간인구와 센서스 기반 주간인구를 자치구 수준에서 비교함으로써 유동인구 조사 자료의 주요 특성들을 밝혔다.
In this paper, we construct a prototype model for city data prediction by using time series data of floating population, and use machine learning to analyze urban data of complex structure. A correlation prediction model was constructed using three of the 10 data (total flow population, male flow population, and Monday flow population), and the result was compared with the actual data. The results of the accuracy were evaluated. The results of this study show that the predicted model of the floating population predicts the correlation between the predicted floating population and the current state of commerce. It is expected that it will help efficient and objective design in the planning stages of architecture, landscape, and urban areas such as tree environment design and layout of trails. Also, it is expected that the dynamic population prediction using multivariate time series data and collected location data will be able to perform integrated simulation with time series data of various fields.
농어촌지역의 하수종말처리시설 민간투자사업에 대한 계획인구 및 계획하수량 산정 방법을 검토하였다. 기존의 추정 방법에서는 인구 감소 추세임에도 불구하고, 인구가 정체될 것으로 가정하여 계획인구를 추정하고 있으며, 수도보급률이 매우 낮은 지역에서의 계획하수량을 정수장 급수보급량을 이용하여 산정하고 있다. 결과적으로 계획 인구 및 계획하수량의 과다 산정은 필요이상의 하수종말처리시설이 만들어지게 되는 결과를 가져오게 된다. 그러므로 본 연구에서는 계획 인구는 통계청의 장래인구 추계결과를 따르는 것으로 하고, 수도가 보급된 지역에서는 급수사용량을, 수도가 보급되지 않은 지역에서는 지하수 사용량을 이용하여 계획하수량을 산정하는 방안을 제시하였다.
Although peak loading coefficient is one of critical design factors for sewer works, its detailed affecting factors were not analyzed because of limited data availability. This study analyzed the affecting factors on peak loading coefficient with plenty data obtained from several newly constructed sewer works. Simple and multiple regression analysis methods were adopted to analyze the relationships of each variable with or without data filtering. Drainage population, drainage area, population density, and daily sewage flow per person showed very weak relationships under diverse characteristics of cities. However, daily sewage flow per person showed stronger relationships with peak loading when daily sewage flow per person was splitted into two ranges. Population density (i.e., drainage population divided by drainage area) and daily sewage flow per person considerably were related with peak loading coefficient when daily sewage flow per person is less than about 400 Lpcd.
The present study analyzed actual cases of designed flow estimation method and designed flow rate of sewage pipe lines. In order to examine the effects of peak-hour demand factor estimation with given daily highest peak loading, we analyzed its effects on designed flow rate with changing the peak-hour demand factor from 2.0 to 10.0. The results of this study are as follows. When reviewing the recent designs, we found that 59.4% of pipe line with 250mm and 300mm diameter, which fall under minimum allowable pipeline did not meet the minimum velocity which is specified as 0.6m/sec in design standards. The pipe line that have minimal access population or have very low slope did not satisfy the minimum velocity. In estimating the designed sewage flow, the applied daily highest peak loading and hourly highest peaking loading were the load factor for the entire population of the planned area, and for the peak loading of the initial pipes connected to a very small population, we applied the same factor as that applied to the entire area and, as a result, the hourly highest flow was underestimated. Because, in case of the initial pipes, the method of applying the same peak loading to all subject areas is highly possible to produce underestimated design flow, when estimating the designed flow of the initial pipes connected to a small population need to adopt a rational flow factor according to the size of population. For this, it is considered to investigate and analyze raw data on daily and hourly variation of sewage flow.
An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.
Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. In the new algorithm, there are many similarity between multi phase flow and passenger flow. The velocity component of 1st phase corresponds to the direction vector of cell, each particle to each passenger, volume fraction to population density and the momentum equation of particle to the walking velocity equation of passenger, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger, To verify the effectiveness of new algorithm, passenger flow analysis for simple railway station model is conducted. The results for passenger flow in the model station are satisfying qualitatively and quantitatively.
Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.
Insight into behaviour of pedestrians as well as tools to assess passenger flow conditions are important in for instance planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.
본 연구의 목적은 통신 데이터를 통해 구축한 유동인구 데이터를 활용하여 서울시 도심도보관광코스 내 유동인구 특성을 파악하고 효과적으로 시각화하여 공간적인 맥락을 분석하는 것이다. 도로에 따른 유동인구 추정을 위해 유동인구 데이터 정제 기법을 개발하여 도보관광코스 별 유동인구 데이터를 구축하였다. 도보관광코스 분석에 적합한 형태로 정제하기 도로 주변 유동인구 값을 고려한 유동인구 추정하여 도보관광코스 내 유동인구를 할당하였다. 정제된 데이터를 바탕으로 서울도보관광 18개 코스 각각의 유동인구 특성과 공간 특성을 도출하였다. 도보관광코스 내 유동인구의 공간 밀도와 집중 구간을 분석하기 위해 커널 밀도분석과 Getis-Ord $G^*_i$ 통계를 적용하였으며 3D 시각화를 통해 서울도보관광 18개 코스별 유동인구 특성을 성, 연령, 시간, 요일에 따라 정량적으로 파악하였다. 그 결과 청계천 제1코스, 경희궁-서대문코스, 인사동-운현궁 코스 순으로 유동인구 규모가 크게 나타났으며 주중에는 인사동-운현궁, 주말에는 성북동 코스의 유동인구가 많았다. 남성 유동인구 비율이 가장 높은 코스는 청계천 제1코스, 여성 유동인구 비율이 가장 높은 코스는 몽촌토성 코스였다. 주말 유동인구 비율이 가장 높은 도보관광코스는 성북동 코스임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.