• 제목/요약/키워드: Poorly Water-Soluble

검색결과 88건 처리시간 0.025초

덱사메타손이 봉입된 지질나노입자의 제조: 지질의 종류와 함량 변화에 따른 지질나노입자의 특성 (Preparation of the Dexamethasone-incorporated Lipid Nanosphere: Characteristics of Lipid Nanosphere by Varying Species and Ratio of Lipid)

  • 정석현;이정은;성하수;신병철
    • 대한화학회지
    • /
    • 제50권6호
    • /
    • pp.464-470
    • /
    • 2006
  • 약물인 덱사메타손은 효과적인 염증치료제이다. 그러나 난용성 약물로써 수용액에서 주사제로 가용화가 어렵다. 따라서 º ¿±¸에서는 ¸Þ¸손을 수용액상에서 주사제로 가용화하기 §Ø¼­ 지질로 만들어진 나노입자에 ¸Þ¸손을 봉입하여 체내투여 시 약물을 서서히 방출할 수 ´ 약물전달체를 제조하고자 ¿´´. 지질나노입자는 인지질, 콜레스테롤 ±×¸?簾? 양이온성 지질을 사용하여 자발 유화 ¿매확산법에 의해 제조하였다. ³ª노입자는 다양한 지질 종류와 지질의 함량에 따라서 봉입효율, 기 그리고 표면전하와 °°º ¹°리적 특성을 평가하였다. 기는 80~120 nm ¿´¸¸, 봉입효율은 80% 이상의 높은 효율을 보였다. 질의 지방쇄의 길이가 ±æ¼· 봉입효율은 증가하였고, 콜레스테롤의 량과 봉입효율은 반비례하였다. 나노지질입자는 양이온성 지질 없이는 형성되지 않았으며 ¾온성 지질의 ·?閻?¡ 따라서 봉입효율은 °¡하였다. 덱사메타손이 봉입된 지질나노입자는 난용성 약물을 주사제로 가용화 수 ´ 새로운 약물전달체로써의 가능성을 기대하는 바이다.

친수성고분자 및 비이온성 계면활성제를 이용한 펠로디핀 서방정제의 설계 (Formulation of Sustained-release Tablets of Felodipine using Hydrophilic Polymers and Non-ionic Surfactants)

  • 이진교;양성운;이봉상;전홍렬;이재휘;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권4호
    • /
    • pp.271-276
    • /
    • 2006
  • Felodipine, a calcium-antagonist of dihydropyridine type, is a poorly water soluble drug and has very low bioavailability. As preceding studies, use of solid dispersion systems and surfactants(solubilizers) has been suggested to increase dissolution and to improve bioavailability of felodipine. But in case of solid dispersion systems, large amount of toxic organic solvents should be used and manufacturing process time become longer than conventional process. In case of using surfactants, as time elapsed, decreasing of dissolution rate of felodipine due to crystallization has been reported. In this study, Copovidon as a hydrophilic polymer and $Transcutol^{\circledR}$ as a surfactant were combined to formulations if order to increase dissolution of felodipine and conventional wet granulation process were applied to manufacturing of formulations. The effect of Copovidon and $Transcutol^{\circledR}$ on the dissolution oi felodipine was investigated in-vitro. When Copovidon and $Transcutol^{\circledR}$ used simultaneously, the dissolution rate of felodipine was prominently increased compared with when used separately and the maximum increase in the dissolution of felodipine was 5.8 fold compared to control. This is most probably due to synergy effect by combination of Copovidon and $Transcutol^{\circledR}$. Felodipine sustained release tablets were successfully formulated using several grades of HPMC as a release retarding agent. The stability of felodipine sustained release tablet was evaluated after storage at accelerated condition($40^{\circ}C/75%\;RH$) for 6months in HDPE(High density polyethylene) bottle. Neither significant degradation nor change of dissolution rate for felodipine was observed after 6months. In conclusion, felodipine sustained release tablet was successfully formulated and dissolution of felodipine, poorly water soluble drug, was prominently increased and also stability was guaranteed by using combination system of hydrophilic polymer and surfactant.

Application of Dry Elixir System to Oriental Traditional Medicine: Taste Making of Peonjahwan by Coated Dry Elixir

  • Choi, Han-Gon;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.66-71
    • /
    • 2000
  • Peonjahwan, an oriental traditional medicine composed of crude herbal drugs and animal tissues is bitter and poorly water-soluble. To mask the bitterness of peonjahwan and enhance the release of bilirubin, one of the crude active ingredients of peonjahwan, peonja dry elixir (PDE), was prepared using a spray-dryer after extracting the crude materials in ethanol-water solution. coated peonja dry elixir (CPDE) was then prepared by coating the PDE with Eudragit acrylic resin. Panel assessed bitterness and release test of bilirubin from PDE and CPDE were carried out and compared with peonjahwan alone. PDE was found to have little effect upon the reduction of the bitterness of peonjahwan. However, the bitterness of CPDE was found to reduce to 1/4 of that of peonjahwan due to the encapsulation of crude active ingredients by the dextrin and Eudragit shell (P<0.05). The release rate of bilirubin from PDE and CPDE for 60 min increased about 3.5- and 2.5-fold, respectively, compared to peonjahwan at pH 1.2. It is concluded that CPDE, which masked the bitterness of peonjahwan and enhanced the release of bilirubin, is a preferable delivery system for peonjahwan.

  • PDF

EXTEMPORANEOUS MICELLAR SOLUBILIZATION OF TITRATED EXTRACT OF CENTELLA ASIATICA IN AQUEOUS MEDIA

  • Kim, Jae-Hyun;Kim, Chong-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.284-284
    • /
    • 1996
  • Titrated Extract of Centella asiatica (TECA) is a poorly water-soluble extract from the Centella asiatica. Despite excellent wound preparation causes pain due to a low aqueous solubility and high hypertonicity and therefore, the patient's compliance of this drug is low. The objective of this study is to design a formulation of TECA with an improved therapeutic applicability via an adequate solubilization. A mixture of propylene glycol and ethoxylated hydrogenated caster oil achieved an acceptable solubilization of TECA (i.e. 10%) via a formulation of micelle. A preparation of extemporaneous TECA micelle was achieved by a dilution of the original micellar formulation with either water or saline. An estimated distribution of particle size was between 15.9 and 32.6 ㎜. The osmotic pressure of the formulation was found to be much lower than that found In a commercially available injectable (i.e. Madecassole). The erthrocytic hemolysis of micellar solution was lower than that with the conventional dosage form, consistent with the osmotic pressure data. Pain score after an injection of the micellar solution was assessed by the hind-paw writhing test using ICR mice and compared with that found with the conventional injectable. The data indicated that the injection of the micellar solution was a significantly less painful. These results indicated that a micellar solubilization, followed by an extemporaneous dilution, is a novel formulation of TECA with an improved therapeutic applicability.

  • PDF

이부프로펜을 함유하는 경구용 자가유화 약물 송달시스템(SEDDS) (Self-Emulsifying Drug Delivery System Containing Ibuprofen for Oral Use)

  • 최정화;김자영;구영순
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권2호
    • /
    • pp.99-103
    • /
    • 1999
  • Self-Emulsifying System(SES), an isotropic mixture of oil and surfactant which forms oil-in-water emulsion, is expected to improve in vitro drug dissolution and enhance in vivo drug absorption. A poorly water soluble drug, ibu-profen(IBP) was incorporated into the SES to improve absorption, and enhance bioavailability of drug. Medium chain triglyceride, glyceryl tricaprylate(GTC) as an oil, and Tween 85 as a surfactant were used to formulate SES. To characterize SESs with various concentrations of Tween 85, the phase separation and solubility of IBP-SEDDS containing IBP as a function of Tween 85 concentration were conducted, and the particle size was measured using photon correlation spectroscopic method. The SES with optimal concentration of Tween 85(35%(w/w)) was selected based on its high drug loading, small particle size and low surfactant concentration. After an oral administration of IBP-SEDDS and IBP suspension in methyl cellulose equivalent to 40.0 mg/kg to rats, the pharmacokinetic parameters were compared. The $C_{max}(163.17\;vs\;88.82\;{\mu}g/ml)$, $AUC(12897.01\;vs\;8751.13\;{\mu}g\;min/ml)$ and Bioavailability(86.44 vs 58.65%) significantly increased but $T_max(10\;vs\;20\;min)$ was significantly advanced. The current SEDDS containing IBP provide an alternative to improve an oral bio-availability of IBP.

  • PDF

대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구 (Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon)

  • 김효선;정진상;이진홍;이상일
    • 한국대기환경학회지
    • /
    • 제31권1호
    • /
    • pp.28-40
    • /
    • 2015
  • To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

Effects of the Particulate Matter2.5 (PM2.5) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity

  • Kim, Jae-Yong;Lee, Eun-Young;Choi, Inho;Kim, Jihoe;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1096-1104
    • /
    • 2015
  • Particulate $matter_{2.5}$ ($PM_{2.5}$) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which $PM_{2.5}$ aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous $PM_{2.5}$ solution on lipoprotein metabolism. Collected $PM_{2.5}$ from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. $PM_{2.5}$ extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. $PM_{2.5}$ treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by $PM_{2.5}$ solution in a dose-dependent manner. Further, $PM_{2.5}$ solution caused cellular senescence in human dermal fibroblast cells. Microinjection of $PM_{2.5}$ solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of $PM_{2.5}$ induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.

개발된 포도 봉지 괘대가 '캠벨얼리' 과실의 생리장해와 병 발생 및 품질에 미치는 영향 (Effects of Developed Grape Bag on the Physiological Disorders, Pathogenic Decay and Fruit Quality in 'Campbell Early' Grapevines)

  • 이영철;문병우;김몽섭
    • 현장농수산연구지
    • /
    • 제6권1호
    • /
    • pp.81-89
    • /
    • 2004
  • 포도 "캠벨얼리" 송이에 새로 개발된 봉지를 괘대하여 봉지 내부의 미기상의 변화, 생리장해 및 병 발생, 과실품질, 수확기 판정의 편이성을 조사하였다. 개발봉지의 미기상은 온도 및 광투과율은 차이가 없었으나, 상대습도 및 봉지 표면의 수분 증발량은 변화를 주었다. 수정불량과, 착색불량과, 동녹 발생율 및 회색곰광이 발생율은 처리 간 큰 차이가 없었다. 열과 및 탄저병 발생은 무대과에 비하여 개발봉지가 현저히 감소하였다. 특히 탄저병 발생정도는 개발봉지가 현저히 덜 심하였다. 과방, 과립 및 과경의 생장 및 가용성고형물, 산 함량, 과색과 과분 발생에는 큰 차이가 없었다. 개발봉지는 수확기 판정의 편이성이 우수하였으며, 과색 및 과분 발생정도가 높아 과실의 품질을 향상시킬 수 있었다.

고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략 (Solid Dispersion as a Strategy to Improve Drug Bioavailability)

  • 박준형;전명관;조훈;최후균
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Absorption Enhancer and Polymer (Vitamin E TPGS and PVP K29) by Solid Dispersion Improve Dissolution and Bioavailability of Eprosartan Mesylate

  • Ahn, Jae-Soon;Kim, Kang-Min;Ko, Chan-Young;Kang, Jae-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1587-1592
    • /
    • 2011
  • The aim of the present study was to improve the solubility and bioavailability of a poorly water-soluble drug in human body, using a solid dispersion technique (hot melt extrusion). The solid dispersion was prepared by cooling the hot melt of the drug in the carrier (Vitamin E TPGS and PVP). The dissolution rate of formulation 1 from a novel formulation prepared by solid dispersion technique was equal to release of formulation 6 (40% of eprosartan mesylate is in contrast to teveten$^{(R)}$) within 60 min (Table 1). The oral bioavailability of new eprosartan mesylate tablet having vitamin E TPGS and PVP K29 was tested on rats and dogs. Of the absorption enhancer and polymer tested, vitamin E TPGS and PVP K29, resulted in the greatest increases of AUC in animals (about 2.5-fold increase in rat and dog). When eprosartan mesylate was mixed with the absorption enhancer and polymer in a ratio of 2.94:2:1, vitamin E TPGS and PVP K29 improved eprosartan mesylate bioavailability significantly compared with the conventional immediate release (IR) tablet Teveten$^{(R)}$ (formulation 7). These results show that solid dispersion using vitamin E TPGS and PVP K29 is a promising approach for developing eprosartan mesylate drug products.