• 제목/요약/키워드: Poor road surface objects

검색결과 1건 처리시간 0.013초

딥러닝 기반 불량노면 객체 인식 모델 개발 (Development of an abnormal road object recognition model based on deep learning)

  • 최미형;우제승;홍순기;박준모
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.149-155
    • /
    • 2021
  • 본 연구에서는 전동 이동기기를 이용하는 교통약자의 이동을 제한하는 노면 불량 요소를 딥러닝을 이용해 자동 검출하는 불량 노면객체 인식모델을 개발하고자 한다. 이를 위하여 부산시 관내 5개 지역에서 실제 전동 이동 보조 장치가 이동할 것으로 예상되는 보행로, 주행로를 대상으로 하여 노면 정보를 수집하였으며 이때 도로 정보 수집은 데이터 수집을 보다 용이하게 하기 위하여 소형 차량을 이용하였다. 데이터는 노면과 주변을 그 주변을 구성하는 객체로 구분하여 영상을 수집하였다. 수집된 데이터로부터 교통약자의 이동을 저해하는 정도에 따라 분류하여 보도블록의 파손등급 검출과 같은 일련의 인식 항목을 정의하였고, YOLOv5 딥러닝 알고리즘을 해당 데이터에 적용하여 실시간으로 객체를 인식하는 불량노면 객체 인식 딥러닝 모델을 구현하였다. 연구의 최종단계에서 실제 주행을 통해 객체 단위로 분리 수집된 영상 데이터의 가공, 정제 및 어노테이션 과정을 수행한 후 모델 학습과 검증을 거쳐 불량노면객체를 자동으로 검출하는 딥러닝 모델의 성능 검증 과정을 진행하였다.