• Title/Summary/Keyword: Pool Temperature

Search Result 351, Processing Time 0.024 seconds

LOW DISSIPATION OF EXCITATION ENERGY IN THE PHOTOSYNTHETIC MACHINERY OF CHILLING-SENSITIVE PLANTS DURING LOWTEMPERATURE PHOTOINHIBITION

  • Moon, Byoung Yong;Lee, Shin Bum;Gong, Yong-Gun;Kang, In-Soon
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1998
  • Using a squash plant, a chilling-sensitive species, and a spinach plant, a chilling-resistant one, effects of chilling temperature on the photosynthetic machinery were studied in terms of chlorophyll fluorescence. When thylakoid membranes were isolated and subjected to incubation at different temperatures, spinach showed stable photosystem II activity at the low temperature side, in contrast to squash which showed quite severe inactivation at low temperature. When parameters of chlorophyll fluorescence were examined, chilling in darkness did not affect either Fv/Fm or photochemical and non-photochemical quenching, in both types of plants. However, chilling of squash plants under irradiance of medium intensity caused a specific decrease in Fv/Fm accompanied by a decline in energy-dependent quenching. Contrastingly, photosystem li of spinach plants were not much affected by light-chilling. When the pool size of zeaxanthin was examined after exposure to high light at different temperatures, squash plants was shown to have a much lower content of antheraxanthin + zeaxanthin, as compared to spinach plants, during low-temperature photoinhibition. These results suggest that chilling-sensitive plants have low capacity to dissipate excitation energy nonradiatively, when they are exposed to low-temperature photoinhibition, and, as a consequence, more vulnerable to photoinhibitory, damage to the photosynthetic apparatus.

  • PDF

THERMAL HYDRAULIC ISSUES OF CONTAINMENT FILTERED VENTING SYSTEM FOR A LONG OPERATING TIME

  • Na, Young Su;Ha, Kwang Soon;Park, Rae-Joon;Park, Jong-Hwa;Cho, Song-Won
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.797-802
    • /
    • 2014
  • This study investigated the thermal hydraulic issues in the Containment Filtered Venting System (CFVS) for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO) was chosen as an accident scenario. Although depressurization in the containment building as a primary objective of the CFVS was successful, the decontamination feature by scrubbing and filtering in the CFVS for a long operating time could fail by the continuous evaporation of the scrubbing solution. After the operation of the CFVS, the atmosphere temperature in the CFVS became slightly above the water saturation temperature owing to the release of an amount of steam with high temperature from the containment building to the scrubbing solution. Reduced pipe diameters at the inlet and outlet of the CFVS vessel mitigated the evaporation of scrubbing water by controlling the amount of high-temperature steam and the water saturation temperature.

A Study on Remodeling for Solar driven $NH_3/H_2O$ absorption chiller (태양열 구동 $NH_3/H_2O$ 흡수식 냉동기 리모델링 연구)

  • Shin, You-Soo;Maeng, Ju-Sung;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.37-43
    • /
    • 2003
  • The aim of this research is to study the feasibility of the solar(hot fluid) driven $NH_3/H_2O$ absorption chiller, made by re-manufacturing of Gas fired $NH_3/H_2O$ absorption chiller. This experimental study is performed with the temperature of the inlet hot fluid of generator. In order to determine the inlet temperature of the generator, which gives maximum COP, the experimental data are obtained with various hot fluid supply temperature in range of $130\sim170^{\circ}C$. Remodeled chiller is operated with periodical cooling effect, which due to mixture subcooled pool boiling, then the COP is evaluated in average. The maximum COP$(\sim0.36)$ is at $160^{\circ}C$. The temperature is stable operation temperature range of typical vacuum collector. It offers a feasibility of solar driven $NH_3/H_2O$ absorption chiller.

Analysis on the Effects of the Heat Loss Coefficient on the Operation Time of Sprinkler in Compartment Fire (구획 화재에서 스프링클러 열 손실계수 변화에 따른 작동 시간 분석)

  • You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, the experiment conditions for the variation of heat release rate in compartment space were constructed to analyze the effects of fire spread and the operation time of sprinkler in accordance with the heat loss of the sprinkler's heat element. The compartment composed of fire board (width = 0.3 m, height = 0.5 m, length = 3.0 m), are manufactured to measure the temperature distributions in the inner space, the mass loss rate and heat release rate during the experiment of N-heptane pool fire test. Also, the operation time of sprinkler is analyzed with the installation of sprinkler and C-factor using Fire Dynamics Simulator Ver.6 under the experiment conditions. The results show that the operation time of sprinkler, which has RTI $100(m{\cdot}s)^{0.5}$ operating temperature $70^{\circ}C$, is 30 s~60 s for C-factor = 0 and 1, 62 s~92 s for C-factor = 3, and 120 s over for C-factor = 5, respectively.

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

Application Study of Design Fire Curves for Liquid Pool Fires in a Compartment (구획실 내 액체 풀화재에 대한 디자인 화재곡선 적용 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Eui Ju;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, new design fire curves were suggested for the utilization in fire simulations. Numerical simulations with the Fire Dynamics Simulator (FDS) were performed for the n-octane and n-heptane pool fires in the ISO 9705 compartment to evaluate the prediction performance of the previous quadratic, exponential design fire curves and newly suggested ones. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The numerical results with the previous quadratic and exponential curves showed slow increase and decrease trend than experiments. However, the numerical results with the newly suggested 2 design fire curves showed more similar variation trend in temperature, $O_2$ and $CO_2$ concentrations than the quadratic and exponential curves. It was found that the newly suggested design fire curves can be possibly used in the numerical simulation of fires in a practical respect.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

A Study on Development of Freshwater Fish Shelter and Evaluation of Water Quality for the Reduction of Thermal Stress in Shallow Pond (얕은 연못에서 담수 어류의 열성 스트레스 저감을 위한 피난처 개발 및 수질환경 조사 연구)

  • Lee, Saeromi;Ahn, Chang Hyuk;Joo, Jin Chul;Song, Ho Myeon;Park, Jae Roh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.828-836
    • /
    • 2014
  • The purpose of this study evaluates the water quality of artificial deep pool (ADP) during the late spring and summer. we monitored the water quality, as pH, dissolved oxygen (DO), temperature and conductivity at two stations (St. 1. open water, St. 2. in the ADP). The water quality in the ADP is very stable, and temperature and DO are lower than the open water (average value; temperature $1.4{\sim}3.2^{\circ}C$, DO 2.4~3.6 mg/L). In particular, daily variation of temperature in the open water showed above $4^{\circ}C$, but ADP remained stable. The water quality was analyzed using two-way analysis of variance (ANOVA). The results of the analysis showed difference about temperature, pH, DO, conductivity (two-way ANOVA, p<0.05). The ADP has created an aqua environment in thermal and DO gradients by depth. About 1.2 m, Temperature and DO were sharply decreased. The Rhodeus uyekii is dominant species in pond of this study. The ADP offers optimum water temperature ($16.5{\sim}18.5^{\circ}C$) to the Rhodeus uyekii about spawning. Consequently, the ADP offers stable habitat than open water for fish and aquatic organisms during the summer. It is also a good shelter for fish from a thermal stress.

Numerical Study on Atmospheric Dispersion and Fire Possibility in Toluene Leakage (톨루엔 누출 시 대기확산 및 화재가능성에 관한 수치해석 연구)

  • Ko, Jae Sun;Kim, Joo-Seok
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • This study examined the risk of accidents when handling hazardous materials in hazardous materials storage facilities without safety facilities. In the case of illegal dangerous cargo containers, the burning rate is very fast in the case of fire, which leads to explosions, that are damaging and difficult to control. In addition, accidents that occur in flammable liquid hazardous materials are caused mostly by accidents that occur in the space due to leakage. Therefore, the variables that affect these accidents were derived and the influence of these variables was investigated. Numerical and computational fluid dynamics programs were used to obtain the following final results. First, when a flammable liquid leaks into a specific space, it is influenced by temperature and relative humidity until a certain concentration (lower limit of combustion) is reached. In the case of temperature, it was found that the reaching time was shorter than the flash point In addition, the effect of variables on pool fire accidents of leakage tanks is somewhat different, but the variables that have the largest influence are the wind speed. Therefore, it is expected that the results of this study will be used as basic data for similar numerical analysis and it will provide useful numerical information about the accidental leakage of hazardous materials under various research conditions.

Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature (열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성)

  • Ha, Kyung-Ja
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.28-28
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea''s stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.