• Title/Summary/Keyword: Pool Fires

Search Result 52, Processing Time 0.026 seconds

An Experimental Study of Smoke Control in Tunnel Fires with Jet Fan (터널화재시 제트팬에 의한 연기제어에 관한 실험적 연구)

  • 이성룡;김충익;유홍선;방기영
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.92-98
    • /
    • 2002
  • In this study reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with jet fan, The 1/20 scale experiments were carried out under the froude scaling using gasoline pool fire range from 6.6 to 12.5 cm in diameter with total heat release rate from 0.714 to 4.77 kW. In the case of fires under the 2.5kW, backlaying was reduced about 40cm and smoke was effectively controled in downstream of the fan when operating the fan. The smoke layer was moved down and the ceiling temperature was decreased compared to that of without fan case in upstream of the fan, but the temperature in the lower part of the tunnel was increased.

An Availability Assessment of Protection Wall Installed in LPG Filling Station (LPG 충전소 내 설치된 방호벽의 효용성 평가)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2018
  • Jet fire, pool fire, and vapor cloud explosion are major accident scenarios in LPG filling station. The protection wall would mitigate radiation effect in a jet fire. In case of a pool fire, the protection wall would restrict expanding the pool area. The protection wall might both obstruct the dispersion of released vapor and protect blast overpressure in a vapor cloud explosion scenario. In this paper, An availability assessment method of the protection wall how much reduce damage to receptors is proposed. Additionally application cases are presented for the effectiveness of protection wall in the LPG filling station. The study shows that the protection wall can effectively reduce the death probabilities of receptors located behind the wall in cases of the jet fires and the vapor cloud explosions.

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.

An Experimental Study on the Effect of Rotation Strength on Fire Whirl Characteristics (회전강도가 Fire Whirl의 특성에 미치는 영향에 관한 실험연구)

  • Choi Sang-Yeol;Ryou Hong-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.11-17
    • /
    • 2005
  • Rotational motion in the atmosphere around a fire may have a profound influence on the fire plume. This process underlies the occurrence of fire whirls. Fire whirls are rare but highly destructive phenomenon which were observed in a large forest, urban and building fires. The present study aims to investigate of the effect of rotation Strength on the fire whirl characteristics expeimentally. Experiments are performed for various sizes of fire source with different rotation strength. From the experimental observations, it is noted that the mean centerline temperature is gradually increased and mean radial temperature is decreased as increases rotation strength. The characteristic mean flame height of fire based on the visible observation is increased as increases of dimensionless swirl parameter, $\Omega/\alpha$, represented by swirl induced motion to buoyancy driven motion.

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구)

  • 김충익;유홍선;이성룡;박현태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

A Study on the Application of Ventilation Equipment in an Underground Fire (지하공간 화재시 배연장비의 활용에 관한 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • In this study, experiments were conducted to evaluate the effectiveness of ventilation equipment in underground fires. Two type of Ventilators were used in experiments. Experiments were carried out using ethanol square pool fire. Maximum heat release rate was about 460kW. Visibility and temperature distribution were evaluated according to mechanical ventilation. In blower type ventilation, visibility was increased and temperature was lowered.

An Experimental Study of Critical Velocity in Sloping Tunnel Fires (경사 터널내 화재시 임계속도에 관한 실험적 연구)

  • 이성룡;김충익;유홍선;김혁순;전명배
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2004
  • In this study, reduced-scale experiments were conducted to analyze an effect of tunnel slope on critical velocity. The 1/20 scale experiments were carried out under the Froude scaling using ethanol pool fire. Square pools ranging from 2.47 to 12.30㎾ were used experiments. Critical velocity varied with one-fourth power of the heat release rate. As the slope of the tunnel increases the critical velocity comes to be fast due to the increase of the chimney effect.

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.

Reduced-Scale Experiments of the Partial Smoke Extraction System in Tunnel Fires (풀화재를 이용한 터널화재 부분배연 모델실험)

  • Lee, Eui-Ju;Yoo, Yong-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.58-64
    • /
    • 2006
  • Smoke extraction in tunnel fire is investigated experimently with thermal model. The object is a immersed tunnel, of which the partial extraction system exists between the tubes. The model tunnel is measured 12 m long, 0.5 m wide and 0.35 m high. The fire is simulated to pool fire and the size corresponds to full scale fire of 5 MW based on Froude modeling. The performance of partial extraction system is determined under two ventilations, natural and longitudinal ones. The results show that compared with longitudinal ventilation, the smoke extraction efficiency of natural ventilation is increased about 30% because of smoke stratification in tunnel. Also the efficiency is identical to the iso-thermal model. The results will be help for activation of the ventilation system in emergency such as in the event of tunnel fires.

Application of Water Mist System for a Power Transformer Room - Fire Extinguishment(Part 1) (변압기실 화재에 대한 미분무수 소화시스템의 적용 - 소화특성을 중심으로(Part 1))

  • Han Yong-Shik;Choi Byung-Il;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.32-36
    • /
    • 2005
  • A water mist system was considered as a possible alternative to a gaseous suppression system that can not prevent re-ignition after fire extinguishment for a power transformer room. This study deals with the fire suppression capability of the water mist systems. High-and low-pressure water mist systems were examined to compare efficiency of both systems. The power transformer examined in this study occupied about $7\%$ of a $10m\times10m\times$ transformer room. Full-scale suppression tests were performed for six different fire scenarios: two spray fires, three pool fires and one cascade fire. The fire suppression test results demonstrated that the high-pressure system was superior to the low-pressure system, especially considering oxygen depletion and the ambient temperature distribution.