• Title/Summary/Keyword: Pontoon

Search Result 77, Processing Time 0.019 seconds

Development of static and dynamic stability utilizing superior SUPER concrete 100MPa pontoon (정적 및 동적안전성이 우수한 SUPER concrete 100MPa 활용 부잔교 개발)

  • Lim, Hyoung Joo;Yun, Sik Jae;Lee, Sang Hee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.135-136
    • /
    • 2016
  • SUPER concrete poontoon is developed to overcome shortcomings about corrosion problem of steel pontoon and the insufficient freeboard line of concrete pontoon. Top slab of Pontoon resists truck load or sidewalk live load. The soffit slab and outer wall of Pontoon resist the horizontal and vertical components of wave pressure, and those were loaded along X and Y-axis of Pontoon. Global analysis for the Pontoon is carried out to design its cross-sections economically using a geometric non-linear time history analysis method by Strand7 and buoyance-stability calculated automatically on non-vertical boundary conditions. And the load-capacity of Pontoon is confirmed through mock-up tests.

  • PDF

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Semi-Rig, Anti-condensation design on steel surface in pontoon area (Semi-Rig, Pontoon 구역 표면 결로 예방 설계)

  • Seo, Dong-jae;Park, Sang-un;Noh, Joung-hwan;Shim, Hak-mu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.105-108
    • /
    • 2017
  • Condensation is one of the common issues which we can easily see in everyday life. For example, the surface of glasses with cold water is easily moisturized. This wet surface gives us uncomfortable feeling and is sometimes dangerous because it is slippery. As the safety on working space is one of the most important issue on offshore project, condensation is also important matter to take care of with precaution. Since the bottom of vessel or offshore facility is submersed in the water, the risk of having condensate on the steel surface is getting higher because sea water temperature is normally lower than ambient temperature. And if there is any electric equipment or person working in that space, condensation is normally not allowed. The pontoon of semi-submersible drilling rig is such a space which is submersed, with electric and mechanical equipments and person working periodically. To prevent condensation in pontoon, study was conducted by checking several cases.

  • PDF

Draft Effects on Hydroelastic Analysis of Pontoon-type VLFS (흘수가 폰툰형 초대형 구조물의 유탄성 응답에 미치는 영향 해석)

  • 홍사영;최윤락;홍석원
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • Present study aims to investigate draft effects on hydro-elastic response of pontoon type VLFS(Very Large Floating Structure). A three dimensional higher-order boundary element method(HOBEM: Hong et al;1999, Choi, Hong and Choi; 2001) is extended to analyze elastic response of structures. Intensive numerical calculations were carried out for box type structure to investigate the draft effect on hydrodynamic forces on pontoon type VLFS. Main attention was paid to wave run-up along the waterline for various cases of draft scantling. It is found that the draft effects on the hydro-elastic response of pontoon type VLFS are important especially in short wave range and shallow water region.

Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper (슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

Analysis of Hydroelastic Response of a Pontoon-type Structure Considering Effect of Wave Breaker with Underwater Opening (해수순환 방파제를 고려한 폰툰형 구조물의 유탄성응답 해석)

  • 홍사영;최윤락;홍석원
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.53-59
    • /
    • 2003
  • Ocean space utilization using VLFS(Very Large Floating Structures) can provide environmental impact free space by allowing sea water flow freely through the floating structure. Use of Pontoon type VLFS for that purpose needs employment of breakwaters for reduction of wave effects. Therefore, in order to maximize advantage of environmental impact free structure, the breakwater should be the one that can allow water flow freely through it, too. In this paper hydroelastic response of a pontoon type structure is analyzed considering breakwaters which allow water flow through its opening at bottom of the breakwaters. Mode superposition technique is used for solving equation of flexible body while interactions between the pontoon and breakwaters is considered based on generalized mode concept. Bi-quadratic nine node higher-order boundary element method is adopted for more accurate numerical treatment near sharp edged body shape. Performance of various combinations of breakwaters is investigated.

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

Study on the Reduction of Wave Exciting Forces Acting on a Pontoon Type Floating Structure by Submerged Plate (몰수평판에 의한 폰툰형 부유체에 작용하는 파랑강제력의 감소현상에 관한 연구)

  • Lee, Sang-Min;Lee, Won-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Pontoon type very large floating structure has been considered and actively studied as one of the most important ocean space utilization. The hydroelastic displacement of the pontoon type floating structure in waves is the largest at its weather side. The purpose of this study is to investigate the characteristics and effects of the submerged horizontal plate which is developed to reduce the wave exciting forces acting on the pontoon type floating structure using numerical analysis. The numerical method based on the finite difference method has been adopted and compared with the experimental data to confirm the reliability of it. We have performed the numerical computation of wave exciting forces acting on the pontoon type floating structure with/without submerged plate and discuss the results of simulation.

  • PDF

Experimental Study on a Dolphin-Fender Mooring System for Pontoon-Type Structure (초대형 부유식 구조물의 돌핀-펜더계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Cho, Seok-Kyu;Hong, Sa-Young;Kim, Young-Shik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.43-49
    • /
    • 2005
  • in this paper a dolphin-fender moored pontoon-type floating structure in shallow water depth is studied focusing on mooring force. The pontoon-type floating structure is 500m long, 300m wide. The structure has partially non-uniform drafts of 2.0m and 3.0m. The employed mooring system is a guyed frame type dolphin-fender system. The 1/125 scale model fender system is made of rubber tube to have hi-linear load deflection characteristics. A series of model tests has been conducted focusing on motion and fender force responses in regular and irregular waves at KRISO's ocean engineering basin Non-linear numerical simulation of fender reaction force has been carried out and the results are compared with those of model tests. The simulated rigid body motion and mooring forces also have been compared with the test results.