• Title/Summary/Keyword: Polyvinyl alcohol (PVA)

Search Result 301, Processing Time 0.027 seconds

Preparation and Characterization of transparent electrode based on polymer/metal oxide composite via electrospinning (전기 방사를 이용한 고분자/금속산화물 복합소재 기반의 투명전극 제조 및 특성 분석)

  • Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1553-1560
    • /
    • 2021
  • We have confirmed that optimized transmittance and surface resistance by electrospinning time, also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances is showed applicability to next generation flexible displays such as solar cells, displays, and touch screens. → We have confirmed the optimized transmittance and surface resistance by electrospinning time Also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances showed applicability to next generation flexible displays such as solar cells, displays, and touch screens.

Detrimental Effect of Bovine Serum Albumin in a Maturation Medium on Embryonic Development after Somatic Cell Nuclear Transfer in Pigs

  • Lee, Hanna;Lee, Yongjin;Park, Bola;Elahi, Fazle;Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Park, Choon-Keun;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.361-368
    • /
    • 2014
  • This study was designed to evaluate the effect of bovine serum albumin (BSA) in a maturation medium on oocyte maturation and embryonic development in pigs. Immature pig oocytes were matured for 44 h in a medium supplemented with 0.4% (w/v) BSA, 0.1% (w/v) polyvinyl alcohol (PVA), or 10% (v/v) pig follicular fluid (PFF). After IVM, oocytes reached metaphase II stage were activated for parthenogenesis (PA) or used as cytoplasts for somatic cell nuclear transfer (SCNT). Nuclear maturation (89.5%, 90.7% and 91.3% for BSA, PVA and PFF, respectively) and intraoocyte glutathione contents (1.20, 1.16 and 1.00 pixels/oocyte for BSA, PVA and PFF, respectively) were not altered by the macromolecules added to maturation medium. IVM of oocytes in a medium containing BSA (21.4%) and PVA (20.7%) showed significantly lower blastocyst formation after PA than culture in medium with PFF (39.2%). After SCNT, oocytes matured in medium with BSA showed decreased embryonic development to the blastocyst stage (9.2%) compared to those matured in medium with PFF (28.9%), while 23.6% of SCNT oocytes matured in medium with PVA developed to the blastocyst stage. When the effect of BSA in a maturation medium during the first 22 h and the second 22 h of IVM in combination with PFF or PVA was examined, PVA-BSA showed a higher nuclear maturation (94.1%) than BSA-PFF (84.5%). However, there was no significant difference in the blastocyst formation among tested combinations (47.3, 52.2, 50.0, 44.4 and 49.0% for PFF-PFF, PFF-BSA, PVA-BSA, BSA-PVA and BSA-PFF, respectively). Our results demonstrate that BSA and PVA added to maturation medium can support oocyte maturation comparable to PFF-supplemented medium. However, maturation of oocytes in a BSA-containing medium decreases embryonic development after PA and SCNT when compared with the medium supplemented with PFF.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Synthesis of Oxide Ceramic Powders by Polymerized Organic-Inorganic Complex Route

  • Lee, Sang-Jin;Lee, Chung-Hyo;Waltraud M. Kriven
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.151-163
    • /
    • 2000
  • A polymerized organic-inorganic complexation route is introduced for the synthesis of oxide ceramic powders. Polyvinyl alcohol was used as the organic carrier for precursor ceramic gel. Porous and soft powders, which have a high specific surface area, were obtained after calcinating the aerated precursors. The PVA content and its degree of polymerization had a significant influence on the homogeneity of the final powder. In particular, attrition milling process with the porous powder resulted in ultra-fine particles. In the case of the preparation of cordierite powder, nano-size powder, which has a high specific surface area of 181 ㎡/g, was obtained by the milling process. The complexation route was also applied to the synthesis of unstable phase in room temperature like beta-cristobalite, high temperature form of silica.

  • PDF

Interfacial Properties of Polypropylene Fiber in High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 복합체 내에서 폴리프로필렌 섬유의 계면 부착성능)

  • Han Byung-Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.108-111
    • /
    • 2004
  • The polypropylene(PP) fiber is poised as a low cost alternative for reinforcement in structural applications in comparison with other high performance fibers, such as the polyvinyl-alcohol(PVA), polyethylene, carbon and aramid fiber. The mechanical properties of the composite are strongly determined by the interfacial behavior of fiber and cementitious matrix. The crack bridging mechanism contribute to composite toughness from activation of the fiber-matrix interface where energy is dissipated through debonding of the interface and fiber pullout. In this study, therefore, the pullout behavior of PP fibers is investigated. Experimental work includes the investigation of the interfacial properties, and the composite property. The quantification of interfacial properties, the frictional bond is achieved through single fiber pullout test. A study on the effect of inclination angle on fiber pullout behavior is also conducted.

  • PDF

The Spalling Characteristics of High Strength Concrete with Fiber Content (섬유 혼입량에 따른 고강도 콘크리트 폭렬 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.387-390
    • /
    • 2005
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of organic fibre content on the spalling of high strength concrete was experimantally investigated. Two types of fibre, polypropylene(PP) and polyvinyl alcohol(PVA) fibres, were selected, and three water/binder ratios were selected, which were W/B $30\%,\;24.\%,\;and\;16\%$, respectively. As a result, it appears that as the concrete strength increases, the fiber content for prevention spalling increases. When W/B ratios are $30\%,\;24.9\%$, the additions of $0.1vol.\%$ and $0.2vol.\%$, respectively, appear to avoid the spalling in this study.

  • PDF

Air lift 반응기를 이용한 생물유화제의 연속생산

  • Jeong, Hye-Seong;Kim, Hak-Ju;Kim, Bong-Jo;Hwang, Seon-Hui;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.329-331
    • /
    • 2000
  • A marine bacterium, Pseudomonas aeruginosa BYK-2 KCTC 18012P was immobilized in modified polyvinyl alcohol for the continuous production of rhamnolipids. The stability of rhamnolipids production, the mechanical strength of beads and the scanning electron microscope of immobilized cell were determined in a repeated batch culture. The rhamnolipids production was maintained $80{\sim}90%$ stability of initial production, and the mechanical strength also was stable during the repeated batch culture more than 14 cycles. In the case of SEM studies, the internal distribution pattern of the cell entrapped in modified PVA beads was observed. On the basis of optimal conditions, the continuous culture was investigated in 1.8L air lift bioreactor. The result suggested 0.1g/h rhamnolipids was obtained from 1%(v/v) fish oil continuously in conditions of 1.2L working volume, 0.5vvm and 20ml/h flow rate.

  • PDF

Flexible Display Device with Organic Composite Film

  • Choi, Yang-Kyu;Yarimaga, Oktay;Kim, Tae-Won;Jung, Yun-Kyung;Park, Hyun-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1233-1236
    • /
    • 2008
  • This study presents the fabrication process and display characteristics of a flexible organic polymer display device that consists of a thin substrate of Polyether Sulfone, a multilayer serpentine-type microheater array that is fabricated on the substrate, and a UV-sensitive polydiacetylene (PDA)-polyvinyl alcohol (PVA) composite film. A retention time of one second is achieved with cell sizes of $500{\mu}m$ and $700{\mu}m$ with cell-to-cell distances of $100{\mu}m$ and $200{\mu}m$, respectively.

  • PDF

Characterization of Carbon Nanotube Cathodes with Surface Treatment by Polymer-Based Organic Materials

  • An, Young-Je;Lee, Ji-Eon;Kim, Kye-Sung;Cheon, Ko-Eun;Karim, Md. Anwarul;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1210-1213
    • /
    • 2006
  • The effect of surface treatment on CNT cathodes used in field emission displays was investigated. A liquid method using a polymer-based organic solution and a mechanical method were applied. The liquid method, using PVA(polyvinyl alcohol) showed high potential compared to the mechanical adhesive taping and rolling method used in the fabrication of CNT cathodes for large-sized field emission displays with high emission uniformity and a low cost.

  • PDF