• Title/Summary/Keyword: Polyvinyl alcohol (PVA)

Search Result 299, Processing Time 0.023 seconds

Studies on the Biological Treatment of Dye Waste Water and Degration of Polyvinyl Alcohol (염색공장 폐수중 PVA 분해세균의 분리 및 생물학적 처리효과)

  • 강선태;서승교;권오억
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 1990
  • As a research for treatment of waste water by biological method, we investigated general characteristics of waste water and isolated some useful bacteria which effectively treated waste water. Compositions of waste water were analyzed to give COD 2060 ppm, PVA 560 ppm, T-N 50 ppm, T-P 3.3 ppm and PH 12. Also, we inverstigated optimum nutrients requirement and growth conditions by mixed culture as well as the effect of coagulants. The COD removal rate reached maximum state for 48 hrs culture at pH 7.0 and 30$^{\circ}$C. Alum as the coagulated was the most effective. The COD removal rate was also increased by supplementing 10 ppm phosphorous sources as additional nutrients. The COD of waste water was reduced to 10% of its initial value by the continuous culture. As a result of overall experiments the COD of effluents became about 100 ppm and final pH 7.

  • PDF

Effect of Chitosan Addition on the Surface Properties of Kenaf (Hibiscus cannabinus) Paper

  • Ashori Alireza;Raverty Warwick D.;Harun Jalaluddin
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The present paper studies the effect of chitosan, cationic starch and polyvinyl alcohol (PVA) as sizing agents to enhance surface properties of kenaf paper. The polymers were incorporated into the sheets by spray application. The results clearly showed that the addition of chitosan to a sheet formed from beaten fibers had excellent improvement in surface properties, compared to the effect of other additives. Sizing quality of cationic starch fairly matched with the sizing quality of chitosan, however, it was able to reduce the water absorption potential of paper more than chitosan at a same concentration. In most other properties, particularly the most important property for printing papers, surface smoothness, chitosan-sized papers are superior to the paper sized with cationic starch or PVA.

Effect of SDS on Retention of Nucleic Acid Components in High-Performance Liquid Chromatography

  • Kim Yong-Nam;Choi Kyeung-Soo;Lee Dai-Woon;Phyllis R. Brown
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.240-245
    • /
    • 1992
  • The effect of the addition of sodium dodecyl sulfate (SDS) to a buffered mobile phase (pH 3.4) on the retention of nucleotides, nucleosides and bases was investigated with a polyvinyl alcohol (PVA) column. Depending on the concentration of SDS, two different trends in the retention of nucleosides and bases containing an $NH_2$ group were observed. If the concentration of SDS was less than 5.5 mM, the retention of compounds containing an $NH_2$ group increased as the concentration of SDS in the mobile phase increased. In contrast, if the concentration was greater than 5.5 mM, the retention of compounds containing an $NH_2$ group decreased. Thus, the SDS acted as an ion-pairing reagent at lower concentration but formed micelles at higher concentrations. The retention behavior of the nucleosides and bases in the presence of a micellar concentration of SDS in the mobile phase on the PVA column was compared to the retention behavior on other types of columns.

Assessing the Dehydration Pervaporation Performance for Purification of Industrially Significant 1, 2 Hexanediol/Water Mixtures Using Crosslinked PVA Membrane (가교된 PVA 분리막을 이용한 1, 2 hexanediol/water 혼합물의 투과증발 탈수 특성 연구)

  • Shivshankar Chaudhari;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.369-376
    • /
    • 2023
  • In this study, the alternative to the energy-intensive conventional vacuum distillation process, an eco-friendly and energy-efficient pervaporation separation was employed in 1,2 hexane diol/water (HDO/water) mixture. The crosslinked PVA-glutaraldehyde was coated inside the alumina hollow fiber membrane (Al-HF). In the HDO/IPA pervaporation separation, optimization of the membrane concerning PVA/GA ratio, curing temperature, and pervaporation operating condition were performed. In the long-term stability test, the sustainable pervaporation separation performance giving flux in the range of 1.90~2.16 kg/m2h, and water content in permeate was higher than 99.5% (separation factor = 68) was obtained from the PVA/GA (molar ratio = 0.08, curing temperature = 80℃) coated Al-HF membrane from HDO/water (25/75, w/w, %) mixture at 40℃. Therefore, this work provides potential and inspiration for PVA-based membranes to mitigate excessive energy requirements in HDO/water separation by pervaporation.

Studies on Photosentitive Polymers (XI). Studies on Photodegradative Reaction of Naphthoquinone-1,2-diazide-5-sulfonyl Esters (感光性 樹脂에 關한 硏究 (第11報). Naphthoquinone-1,2-diazide-5-sulfonyl Esters의 光分解反應)

  • Shim Jyong Sup;Kang Doo Whan
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.280-285
    • /
    • 1975
  • The degradation mechanisms of naphthoquinone-1,2-diazide-5-sulfonyl esters(PGND, BEND and PVAND) of polyglyceryl phthalate (PG), bisphenol A-epichlorohydrin (BE) and polyvinyl alcohol (PVA) were studied by infrared absorption spectra. Absorption band due to C=N=and C=O of o-quinonediazide group decreased or disappeared after sufficient exposing to light. And also, absorption band C=O of indene carboxylic acid was increased. From the results, it may be concluded that the above photosensi tive polymers were dissociated to indene carboxylic acid soluble in aqueous alkali solution. Further, the effect of sensitizers were examined by the variation of intensity in infrared absorption spectra of sensitized and unsensitized samples.

  • PDF

Influences to Additive Type on Carbon Nanotube metal composite (첨가제 종류에 따른 탄소나노튜브 금속복합재료 소결코팅 영향)

  • Kim, Dea-Hea;Zheng, XI-Ru;Kim, Myin-Su;Park, Chan-Woo
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.159-163
    • /
    • 2012
  • The coating of metal surface with carbon nanotubes(CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The multiwalled carbon nanotube/copper oxide(CuO) composite powder, which has been surface modified by dispersant and polyvinyl alcohol solution, was ultrasonically sprayed and sintered on a copper wafer. In this paper, experiments were performed to assess the characterization and comparison of the carbon nanotube before and after sinterning and the morphology changes of the CNT/CuO-coated surface by using different dispersants. The dispersants used are THF (Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate). The samples were examined by scanning electron microscopy(SEM), thermogravimetric analysis(TGA), differential scanning calorimeter(DSC) and Raman spectroscopy.

Bending performance and calculation of reinforced beam with hybrid fiber and CaCO3 whisker

  • Li Li;Yapeng Qin;Mingli Cao;Junfeng Guan;Chaopeng Xie
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • In this paper, the bending performance of a MSFRHPC (containing steel fiber, polyvinyl alcohol (PVA) fiber, and CW)-reinforced beam was studied for the first time. Introducing a multiscale fiber system increased the first crack load (up to 150%), yield load (up to 50%), and peak load (up to 15%) of reinforced beams. The multiscale fiber system delays cracking of the reinforced beam, reduces crack width of the reinforced beam in normal use, and improves the durability of the beam. Considering yield load and peak load, the reinforcing effect of multiscale fiber on the high-reinforcement ratio beam (1.00%) is better than that on the low-reinforcement ratio beam (0.57%). Introducing fibers slowed the development of cracks in the reinforced beam under bending. With the added hybrid fiber, the deformation concentration of reinforced beams after yield was more significant with concentration in 1 or 2 cracks. A model for predicting the flexural capacity of MSFRHPC-reinforced beams was proposed, considering the action of multiscale hybrid fibers. This research is helpful for structure application of MSFRHPC-containing CW.

Correlation between in vitro release and in vivo bioavailability of Propranolol.HCI from Poly(vinyl alcohol) Hydrogel Suppositories (폴리비닐알코올 하이드로겔 좌제로부터 프로프라놀롤의 in vitro 방출과 in vivo 생체이용률간의 상관성)

  • Kim, Ho-Jeong;Ku, Young-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.275-282
    • /
    • 1998
  • In order to develop a desirable in vitro release which correlates well with in vivo bioavailability, hollow type suppository containing Propranolol HCl(PPH) powder in the cavity and conventional type suppository with dispersed PPH in the base were prepared. Polyvinyl alcohol (PVA) hydrogel as a base and PPH as a model drug were used for the preparation of suppository. The rates of drug release from the suppositories were studied by Paddle method, Muranish method, Dialysis tubing method and Rotating dialysis cell method. The release profiles from suppositories using the four different release tests were compared. After a rectal administration in rat, the mean $C_{max}$ of hollow type suppository was significantly lower than that of conventional type, but $T_{max}$, $AUC_{0{\to}12}$ and MRT of hollow type were significantly higher 1.6 times, 1.2 times and 1.9 times than those of conventional type, respectively. The computer program was used to simulate plasma concentration from in vitro released amounts of drug and in vivo pharmacokinetic parameters. Based on comparison of the simulated bioavailability from computer program with experimental bioavailability in rat we have found out in vitro release test which correlates well with in vivo bioavailability. Our results have shown the best correlation between in vitro release and in vivo bioavailability in PPH-PVA hydrogel hollow type suppository for the paddle method and conventional type suppository for the rotating dialysis cell method. In this work we propose that PPH-PVA hydrogel suppository shows in vitro-in vivo correlation. This data should help to optimize the formulation of the drug and provide a basis for quality control procedures.

  • PDF

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.

Effects of PVA and CMC addition on Rheological Characteristics and Curtain Stability of GCC Based Curtain Coating Colors (PVA와 CMC 첨가가 커튼 코팅용 GCC 도공액의 유변 특성 및 커튼 안정성에 미치는 영향)

  • Choi, Eun-Heui;Kim, Chae-Hoon;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.74-82
    • /
    • 2010
  • Curtain stability without curtain contraction is critical for a successful operation in curtain coating, and this can be influenced by the change in particle dynamics and rheological properties of coating colors. In this study, polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) were added to control the rheology of GCC based curtain coating colors. Surface tension was increased slightly with increasing content of cobinder. Shear-thinning of viscosity was more pronounced for the CMC containing GCC coating colors. Complex modulus decreased when small amount of PVA was used as a cobinder, but it increased in other coating colors. Extensional viscosity was increased with increasing of the cobinder content, but CMC was more effective. Results indicate that pigment interaction with PVA is different from that with CMC. Dispersibility of coating colors was improved due to steric stabilization when small amounts of PVA was used, but flocculation occurred by bridging when the amount of PVA was increased. Dispersibility of coating colors was improved when small amount of CMC was added, while flocculation was observed by depletion effect when the concentration of CMC was increased in coating colors. Addition of cobinders at proper levels gave positive effects both in rheological properties and curtain stability. On the other hand, excessive amount of cobinders caused particle flocculation and this resulted in rheological and curtain stablity problems.