• Title/Summary/Keyword: Polyurethane Biopolymer

Search Result 4, Processing Time 0.02 seconds

A Study on the Micro Machining in Polyurethane by Excimer Laser (엣시머 레이져를 이용한 폴리우레탄의 미세 가공에 관한 연구)

  • 김재구;이성국;윤경구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.366-370
    • /
    • 1997
  • This paper descibes a micro groove machining process on the polyurethane biopolymer by KrF excimer laser. To investigate the etch charcteristics of polyurethane biopolymer quantitatively,laser system for ablation was installed with high precison moter and then polymer ablation experiment, in which paramteters were fluence,pulse repetition rate,numbers of pulses and assist gas, was carred out. In this experiment, we found out that the value of critical energy density for ablation is 30mJ/cmsup2/ and the etching rate is more dependent on the pulse number and fluence than any other pamameter. Finally, we machined micro grooves for fiexibility as width 300.mu.m depth 100.mu.m and port for micro-devices mounting as length 100.mu.m width 300.mu.m depth .mu.m on the outer wallof polyurethane biopolymer tube which is used as medical device.

  • PDF

Preparation of Wood Adhesives from the Rice Powder and pMDIs; Characterizations of Their Properties

  • Lee, Sang-Min;Joo, Ji-Hye;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.607-615
    • /
    • 2015
  • To investigate the adhesion effect of various kinds and contents of polymeric methylene diphenyl diisocyanates (pMDIs) on adhesion performance, wood adhesives (A-1~5) were synthesized and characterized. As results, when the amount of pMDI increased in adhesives, the dry tensile strength was found to be proportionally increased sustaining at around $16.0{\sim}21.6kgf/cm^2$. The polyurethane (PU) resin, which used M11S as a source of pMDI showed the best wet tensile strength at $11.9kgf/cm^2$ and cyclic boil tensile strength at $8.1kgf/cm^2$, which satisfied the requirement of over $7kgf/cm^2$. Thermal properties of the rice powder (RP) based polyurethane resins were characterized by differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA). Thermal stability of polyurethane resins increased to $250^{\circ}C$ with adding pMDIs. The more pMDI (M5S) was added to adhesive, the higher thermal stability of the resin was observed by TGA.

Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass (바이오매스 자원을 활용한 바이오폴리올, 바이오이소시아네이트 및 바이오폴리우레탄 제조)

  • Jo, Yoon Ju;Choi, Sung Hee;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.579-586
    • /
    • 2013
  • The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used polymers in automobile, construction and chemical industries. Two monomers for the polymerization of polyurethane, polyols and isocyanates, can be produced from renewable biomass such as plant oil, cellulose, lignin and etc. Biopolyol production from plant oil has already been implemented in commercial-scale production. In this paper, recent progresses on bio-based approaches on the production of biopolyols, bio-isocyanates and bio-substituent or isocyanate from bio-feedstock are reviewed alongside polymerization and characterization of biopolyurethane for industrial applications.

Preparation and Comparison the Physical Properties of Polyurethane-Urea Using Biomass Derived Isosorbide (바이오매스 유래 이소소르비드를 이용한 폴리우레탄-우레아의 제조 및 특성 비교)

  • Park, Ji-Hyeon;Park, Jong-Seung;Choi, Pil-Jun;Ko, Jae-Wang;Lee, Jae-Yeon;Sur, Suk-Hun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.165-176
    • /
    • 2019
  • Polyurethane-ureas(PUUs) were prepared from 4,4'-methylenebis(cyclohexyl isocyanate) and various diols including isosorbide. Isosorbide is starch-derived monomer that exhibit a wide range of glass transition temperature and are therefore able to be used in many applications. PUU was synthesized by a pre-polymer polymerization using a catalyst. Successful synthesis of the PUU was characterized by fourier transform-infrared spectroscopy. Thermal properties were determined by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. It was found that by tuning isosorbide content in the resin, their glass transition temperature(Tg) slightly decreased. Physical properties were also determined by tensile strength and X-ray diffraction. There is no significant differences between petroleum-derived diol and isosorbide in XRD analysis. Moreover, their physical and optical properties were determined. The result showed that the poly(tetramethylene ether glycol)/isosorbide-based PUU exhibited enhanced tensile strength, transmittance, transparency and biodegradability compared to the existing diols. After 11 weeks composting, the biodegradability of blends increased in ISB-PUU. The morphology of the fractured surface of blend films were investigated by scanning electron microscopy.