• Title/Summary/Keyword: Polyurethane(PU) foam

Search Result 59, Processing Time 0.026 seconds

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template (카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성)

  • Lee, Sangmin;Kim, Ji-Hyun;Jeong, Euigyung;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.268-273
    • /
    • 2016
  • To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

A Study for impact absorption function of midsole in Cushioned Marathon Shoes (충격흡수용 마라톤화(Cushioned Shoes) 개발을 위한 중창·하지의 충격흡수기능 연구 -마라톤화 연구의 과거 & 현재를 중심으로-)

  • Park, Seung-Bum;Seo, Kuk-Woong;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.89-114
    • /
    • 2002
  • The purpose of this study was to analyze impact absorption function of midsole in cushioned marathon shoes. The foot is made up of a complex interaction of bones, ligaments, and muscles. These structures help the foot alternate between being a mobile, flexible adaptor and a stable rigid lever. The foot is broken down into two functional parts, the forefoot and the rearfoot. Cushioned marathon shoes for high arches have generous cushioning for efficient and high-mileage runners. Cushioned marathon shoes are made for feet that have high arches or no excessive motion and don't roll inward or roll outward. This condition is known as underpronation. Especially, Cushioned marathon shoes are designed to reduce shock and generally have the softest (or most cushioned) midsoles and the least medial support. They are usually built on a semicurved or curved last to encourage foot motion, which is helpful for underpronators (who have rigid, immobile feet). Cushioning marathon shoes recommended for the high-arched runner, whose foot may roll outward (supinate) rather than the natural slight inward roll, or whose feet may be relatively rigid. Cushioning shoes emphasize flexibility and usually are built on a curved or semicurved last to encourage a normal motion of the foot. Cushioning shoes usually offer no medial (inner foot) support. Cushioned marathon shoes have the single-density midsole, which is stable and relatively firm for a cushioned shoe, stays the same. But the forefoot is more rounded, and the rearfoot now includes a new and supportive rearfoot cradle. A foam midsole, perhaps with layers of different densities, to provide cushioning and shock absorption. EVA (ethylene vinyl acetate) and PU (polyurethane), the materials from which these foams usually are made. EVA is slightly softer than PU. EVA and PU may be layered together in a shoe, or a shoe may have more than one density of EVA.

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Mechanical Performance Comparison of Pedicle Screw Based on Design Parameters: Dual Lead and Dual Pitch (척추경 나사못의 디자인이 고정력 및 구동 토크에 미치는 영향 분석: 이중 나사 및 이중 피치 나사)

  • Choi, Sun-Gak;Cha, Eun-Jong;Kim, Kyung-Ah;Ahn, Yoon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.134-139
    • /
    • 2018
  • One of the most common problems with pedicle screw system is pullout of the screw. This study was performed to evaluate the pullout strength and driving torque of newly designed pedicle screws. The design of three type screws were standard pedicle screw, which had single lead threaded and single pitched design (Type A), single pitched and dual lead threaded pedicle screw (Type B), dual pitched and dual lead threaded pedicle screw (Type C), respectively. The tests were performed in accordance with the ASTM standards using polyurethane (PU) foam blocks. There was no significant difference in pullout strength among three types of screw. Type B and Type C exhibited higher insertion torque and removal torque than Type A, respectively (p<0.05). Pedicle screws newly developed with dual pitched and dual lead threaded design showed higher driving torque without decrease in pullout strength compared to the standard pedicle screw and could be inserted more rapidly with the same number of revolutions.

Removal Characteristics of Toluene in Biofilters Packed with Reticulated-PU-Foams of Different Porosities (서로 다른 공극률의 망상형 폴리우레탄들이 충전된 바이오필터에서 톨루엔 제거 특성)

  • 명성운;남윤수;이용우;최호석
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.448-454
    • /
    • 2003
  • We studied on the removal of toluene vapors in a lab-scale biofilter. There are three biofilters packed with reticulated polyurethane foams of different porosities of 15, 25, 45 PPI (Pore Per Inch) as media. A toluene-degrading strain (Pseudomonas Putida KCCM 11348, ATCC 12633) was naturally immobilized on the filter media by circulating the culture media. Three biofilters were operated under different sets of continuous experiments, varying both the design and operation parameters such as the inlet toluene concentration and the flow rate. Maximum elimination capacity of 115.5g/㎥hr of biofilter packed with foams of 25 PPI was obtained for toluene degradation. The effect of operating conditions such as flow rate, inlet toluene concentration and porosity on the performance of the biofilter was investigated.

Fire-Protective Coating for Polymer Construction Materials using Two-dimensional Nanomaterials (2차원 나노소재를 활용한 고분자 건축자재의 난연코팅기술 개발)

  • Kim, Hanim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.183-190
    • /
    • 2024
  • An environmentally-friendly nanocoating method that effectively adds flame retardant(FR) and gas shielding properties to combustible polymeric construction materials such as flexible polyurethane (PU) foam was studied. Naturally-driven two-dimensional(2D) nanomaterials such as graphene oxide (GO) can exhibit liquid crystalline (LC) properties in aqueous solutions, enabling uniform coatings on the various substrates including 3D-porous foams. LC phase-assisted coating serves as 3D-scaffold, facilitating the introduction of small molecules having antioxidant capabilities such as dopamine which is to form uniformly stacked FR coating. Additionally, the structural characteristics of the 2D-materials can effectively hinder the migration of toxic gases and flammable substances in the gas phase generated during combustion. This LC phase flame retardant coating technology could be a new approach to provide environmentally friendly and effective flame retardant and gas barrier properties to various types of polymeric materials.

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

DEVELOPMENT AND EVALUATION OF A PHANTOM FOR MULTI-PURPOSE DOSIMETRY IN INTENSITY-MODULATED RADIATION THERAPY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • A LEGO-type multi-purpose dosimetry phantom was developed for intensity-modulated radiation therapy (IMRT), which requires various types of challenging dosimetry. Polystyrene, polyethylene, polytetrafluoroethylene (PTFE), and polyurethane foam (PU-F) were selected to represent muscle, fat, bone, and lung tissue, respectively, after considering the relevant mass densities, elemental compositions, effective atomic numbers, and photon interaction coefficients. The phantom, which is composed of numerous small pieces that are similar to LEGO blocks, provides dose and dose distribution measurements in homogeneous and heterogeneous media. The phantom includes dosimeter holders for several types of dosimeters that are frequently used in IMRT dosimetry. An ion chamber and a diode detector were used to test dosimetry in heterogeneous media under radiation fields of various sizes. The data that were measured using these dosimeters were in disagreement when the field sizes were smaller than $1.5{\times}1.5\;cm^2$ for polystyrene and PTFE, or smaller than $3{\times}3\;cm^2$ for an air cavity. The discrepancy was as large as 41% for the air cavity when the field size was $0.7{\times}0.7\;cm^2$, highlighting one of the challenges of IMRT small field dosimetry. The LEGO-type phantom is also very useful for two-dimensional dosimetry analysis, which elucidates the electronic dis-equilibrium phenomena on or near the heterogeneity boundaries.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.