• 제목/요약/키워드: Polytropic

검색결과 41건 처리시간 0.024초

공기압 서보 시스템의 위치 제어 및 시뮬레이션에 관한 연구 (A Study on the Position Control and Simulation of Pneumatic Servo System)

  • 최서호;홍예선;이정오
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.102-113
    • /
    • 1996
  • An experimental and theoretical study on a pneumatic servo system has been conducted using on-off valves and a pneumatic cylinder. A V/I converter has been designed for rapid rising and falling of the solenoid current, which significantly improves the positioning accuracy and settling time of the servo system by shortening the valve opening time. Pulse width modulation was modified to operate on-off valves effectively. A state feedback controller which feeds back position, velocity and acceleration is used to control the system. The influence of controller gains on the system performance is studied to develop a scheme that automatically adjusts the gains using fuzzy logic theory. It is shown experimentally that the proposed fuzzy logic tuner works satisfactorily. A new method for measurements of valve effective areas is proposed, and a partially polytropic model is applied to simulation of the pneumatic system. Simulated results show good agreement with experimental data.

  • PDF

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

자동차 에어컨 비정상과정 시뮬레이션 (Transient Simulation of an Automotive Air-Conditioning System)

  • 오상한;원성필
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

에어챔버가 설치된 송수관로에서의 수격현상 (Waterhammer in the Transmission Pipeline with an Air Chamber)

  • 김경엽
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Dependence of tidal disruption flares on stellar density profile and orbital properties

  • Park, Gwanwoo;Hayasaki, Kimitake
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.48.2-48.2
    • /
    • 2019
  • Tidal disruption events (TDEs) provide evidence for quiescent supermassive black holes (SMBHs) in the centers of inactive galaxies. TDEs occur when a star on a parabolic orbit approaches close enough to a SMBH to be disrupted by the tidal force of the SMBH. The subsequent super-Eddington accretion of stellar debris falling back to the SMBH produces a characteristic flare lasting several months. It is theoretically expected that the bolometric light curve decays with time as proportional to $t^{-5/3}$. However, some of the observed X-ray light curves deviate from the $t^{-5/3}$ decay rate, while some of them are overall in good agreement with the $t^{-5/3}$ law. Therefore, it is required to construct the theoretical model for explaining these light curve variations consistently. In this paper, we revisit the mass fallback rates semi-analytically by taking account of the stellar internal structure, orbital eccentricity and penetration factor. We find that the mass fallback rate is shallower than the standard $t^{-5/3}$ decay rate independently of the polytropic index, and the orbital eccentricity only changes the magnitude of the mass fallback rate. Furthermore, the penetration factor significantly can modify the magnitude and variation of mass fallback rate. We confirm these results by performing the computational hydrodynamic simulations. We also discuss the relevance of our model by comparing these results with the observed light curves.

  • PDF

통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사 (Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method)

  • 신상묵
    • 대한조선학회논문집
    • /
    • 제58권5호
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

에어챔버가 설치된 가압펌프 계통에서의 수격현상 (Water Hammer in the Pump Pipeline System with an Air Chamber)

  • 김상균;이계복
    • 에너지공학
    • /
    • 제16권4호
    • /
    • pp.187-193
    • /
    • 2007
  • 갑작스런 펌프 정지로 야기되는 수격현상은 과압이나 부압을 일으킬 수 있다. 과압을 줄이거나 부압을 방지하는 것은 계통설비의 피로를 피하고 작동효율을 향상시키기 위해 필요하다. 에어챔버가 설치된 펌프 관로 계에서 수격현상에 대한 현장시험을 수행하였다 또한 특성 곡선법을 사용하여 과도현상에 대한 수치해석을 수행하였다. 계통에 대한 헌장시험과 수치해석 결과를 비교하여 수치해석코드에 사용되는 주요 입력변수인 폴리트로픽 지수, 유량계수, 압력파의 속도에 대한 보정값 검증과 민감도 분석을 수행하였다. 수격현상을 최소화할 수 있는 에어챔버의 크기와 관련 변수의 영향이 현장시험과 수치해석을 통해 연구되었다.

ERotating Bondi Accretion Flow with and without outflow

  • Han, Du-Hwan;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.52.4-53
    • /
    • 2020
  • It is less well known that the properties, especially the mass accretion rate, of accretion flow are affected by the angular momentum of accreting gas. Park (2009) found that the mass accretion rate \dot{m}, mass accretion rate in units of Bondi accretion rate, is inversely proportional to the angular momentum of gas λ, at the Bondi radius where gas sound speed is equal to the free-fall velocity and proportional to the viscosity parameter α, and also Narayan & Fabian (2011) found a similar relation, but the dependence of the mass accretion rate of the gas angular momentum is much weaker. In this work, we investigate the global solutions for the rotating Bondi flow, i.e., polytropic flow accreting via viscosity, for various accretion parameters and the dependence of the mass accretion rate on the physical characteristics of gas. We set the outer boundary at various radius r_{out}=10^3~10^5 r_{Sch}, where r_{Sch} is the Schwarzschild radius of the black hole. For a small Bondi radius, the mass accretion rate changes steeply, as the angular momentum changes, and for a large Bondi radius, the mass accretion rate changes gradually. When the accreting gas has a near or super Keplerian rotation, we confirm that the relation between the mass accretion rate and angular momentum is roughly independent of Bondi radius as shown in Park (2009). We find that \dot{m} is determined by the gas angular momentum at the Bondi radius in units of r_{Sch}c. We also investigate the solution for the rotating Bondi flow with the outflow. The outflow affects the determination of the mass accretion rate at the outer boundary. We find that the relation between the mass accretion and the gas angular momentum becomes shallower as the outflow strengthens.

  • PDF

국내 돼지에 존재하는 내인성 레트로 바이러스의 엔밸로프 유전자 클로닝 및 분자 계통학적 분석 (Molecular Cloning and Phylogenetic Analysis of PERVs from Domestic Pigs in Korea (env gene sequences))

  • 이동희;유재영;이정은;김계웅;박홍양;이훈택;김영봉
    • Journal of Animal Science and Technology
    • /
    • 제47권2호
    • /
    • pp.177-186
    • /
    • 2005
  • Xenotransplantation may help to overcome the critical shortage of human tissues and organs for human transplantation, Swine represents an ideal source of such organs owing to their anatomical and physiological similarities to human besides their plentiful supply, However, the use of organs across the species barrier may be associated with the risk of transmission of pathogens, specially porcine endogenous retroviruses (PERVs).• Although most of these potential pathogens could be eliminated by pathogen-free breeding, PERVs are not eliminated by this treatment. PERVs are integrated into the genome of all pigs and produced by normal pig cells and infect human cells. They belong to gamma retroviruses and are of three classes viruses: A, B and C. In the present study, PCR based cloning was performed with chromosomal DNA extracted from pigs from domestic pigs in Korea. Amplified PCR fragments of about 1.5 Kb, covering the partial env gene, were cloned into pCR2.l-TOPO vectors and sequenced. A total of 91 env clones were obtained from domestic pigs, Berkshire, Duroc, Landrace and Yorkshire in Korea. Phylogenetic analysis of these genes revealed the presence of only PERV class A and B in the proportion of 58 % and 42 %, respectively. Among these, 28 clones had the correct open reading frame: 18 clones in class A and 10 clones in class B. Since both these PERV classes are polytropic and have the capacity to infect human cells, our data suggest that proviral PERVs have the potential to generate infectious viruses during or after xenotransplantation in human.