• Title/Summary/Keyword: Polythiophene surface

Search Result 9, Processing Time 0.024 seconds

Optical Properties of Soluble Polythiophene for Flexible Solar Cell

  • Kim, Byoung-Ju;Park, Eun-Hye;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.91-93
    • /
    • 2018
  • Polythiophene-$TiO_2$ composite was synthesized with different molar ratios of thiophene and titaniumisopropoxide ($Ti(OPr)_4$) for flexible solar cell application as a flexible electrode or an active material. The $Ti(OPr)_4$ was stabilized by thiophene. The thiophene was polymerized by ferric chloride catalyst. The synthesized polythiophene exhibited strong UV-visible absorption in the range of the wavelength shorter than 500 nm. Field emission scanning electron microscope (FESEM) image of low concentration of $TiO_2$ film showed smooth surface. However, FESEM image of high concentration of $TiO_2$ film exhibited relatively rough surface. Polythiophene concentration dependent strong photoluminescence quenching of surfrhodamine-B was observed.

Odd-even Effects on the Surface Anchoring Strength and the Pretilt Angle Generation in NLC on Rubbed Polythiophene Surfaces with Alkyl Chain Lengths

  • Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • We have investigated that the high pretilt angle of the NLC, 4-n-pentyl-4-cyanobiphenyl (5CB), was observed on rubbed polythiophene (PTP) surfaces with alkyl chains with more than 10 carbon atoms; it is attributed to the surface-excluded volume effect by the alkyl chain lengths between the LCs and the PTP surfaces. Next, we investigated that the odd-even effect of the polar anchoring strength in 5CB on rubbed PTP surfaces with alkyl chain lengths has been successfully evaluated. The anchoring strength of 5CB for rubbed PTP surfaces with odd-number is weak compared with even-number up to the 6 carbon atoms in the alkyl chain; however, odd-number is strong compared with even-number above 7 carbon atoms. The weak anchoring strength of 5CB is approximately $1\times10^{-3} (J/m^2$) on rubbed PTP surface with 7 carbon atoms; it is relatively strong anchoring strength. Consequently, we conclude that the odd-even effects of the polar anchoring strength in NLCs are strongly related to the characteristics of the polymer and observed clearly for short alkyl chain lengths.

  • PDF

Alignment effects of the nematic liquid crystal on polythiophene Surfaces (Polythiophene막을 이용한 네마틱액정의 배향효과)

  • 서대식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.127-129
    • /
    • 1997
  • The high pretilt angles in nematic liquid crystals (NLCs) have been generated on robbed polythiophene (PTP) surfaces with alkyl chain lengths. The pretilt angle of the NLC was observed on unidirectionally rubbed PTP surfaces with alkyl chains with more than 9 carbon atoms. We obtained the Pretilt angle of 15~40$^{\circ}$ on rubbed PTP surfaces with 10 carbon atoms in the a1ky1 chain. Also, the pretilt angles of 65~80$^{\circ}$ of NLC were obtained on rubbed PTP surfaces with 11 and 12 carbon atoms in the alkyl chain. We suggest that this high pretilt angle generation in NLC is due to the surface-excluded volume effect by the alkyl chain lengths between. the LCs and the PTP surfaces. Finally, we conclude the odd-even effect on rubbed PTP surfaces is clearly contributed to the pretilt angle generation.

  • PDF

An Electrochemical Approach for Fabricating Organic Thin Film Photoelectrodes Consisting of Gold Nanoparticles and Polythiophene

  • Takahashi, Yukina;Umino, Hidehisa;Taura, Sakiko;Yamada, Sunao
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.79-81
    • /
    • 2013
  • A novel method of fabricating polythiophene-gold nanoparticle composite film electrodes for photoelectric conversion is demonstrated. The method includes electrodeposition of gold and electropolymerization of 2,2'-bithiophene onto an indium-tin-oxide (ITO) electrode. First, electrodeposition of gold onto the ITO electrode was carried out with various repetition times of pulsed applied potential (0.25 s at -2.0 V vs. Ag/AgCl) in an aqueous solution of $HAuCl_4$. Significant progress of the number density of deposited gold nanoparticles was confirmed from scanning electron micrographs, from 4 (1 time) to 25% (15 times). Next, electropolymerization of 2,2'-bithiophene onto the above ITO electrode was performed under controlled charge condition (+1.4 V vs. Ag wire, 15 $mC/cm^2$). Structural characterization of as-fabricated films were carried out by spectroscopic and electron micrographic methods. Photocurrent responses from the sample film electrodes were investigated in the presence of electron acceptors (methyl viologen and oxygen). Photocurrent intensities increased with increasing the density of deposited gold nanoparticles up to ~10%, and tended to decrease above it. It suggests that the surplus gold nanoparticles exhibit quenching effects rather than enhancement effects based on localized electric fields induced by surface plasmon resonance of the deposited gold nanoparticles.

Deposition and in-situ Plasma Doping of Plasma-Polymerized Thiophene Films Using PECVD

  • Kim, Tae-Wook;Lee, Jung-Hyun;Back, Ji-Woong;Jung, Woo-Gwang;Kim, Jin-Yeol
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • Highly transparent, thin polythiophene (PT) films were successfully synthesized by the plasma polymerization of thiophene. These films were doped with $O_2$ plasma by in-situ doping technique. The plasma polymerized PT films were deposited at about 50 to 340 nm/min, depending on the temperature and plasma power. A resultant transparency as high as 85% was achieved. The plasma polymerized PT films exhibited the characteristics of an insulator or semiconductor ($10^{10{\sim}12}{\Omega}/{\Box}$, $10^{-7}S/cm$). The conductivity was immediately increased up to $10{\Omega}/{\Box}$ and $10^{-2}S/cm$, when doped with $O_2$ plasma. The plasma-doped PT films exhibited an increased surface roughness resulting in a decreased contact angle. However, the thickness of the PT layer was partially decomposed and/or etched with increasing voltage above 40 W.

Synthesis of Electroactive Polythiophene Derivatives and Its Application for Biointerface (I) (전기적 활성을 갖는 폴리티오펜 유도체들의 합성과 생체계면에의 응용 (I))

  • 정선형;배진영;김지흥;정동준
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • In this study, we synthesized novel thiophene derivatives by the protection of the carboxyl group of 3-thiophene acetic acid with differently substituted benzyl groups. While 3-thiophene acetic acid is not electro-polymerizable, the modified monomers can be easily electro-oxidized to form stable electroactive polymers. The protecting groups can be easily removed in the solid state and the desired reactive carboxyl group can be introduced on the polymer surface. SEM observations show that obtained polymer films show a very good film surface and homogeneous morphology on the Pt electrode. After introduction of macromonomer, FT-IR spectrum shows new absorption bands at 1650 and $1550 cm^{-1}$, which is consistent with the formation of an amide bond. Electroactivity measurements were examined by cyclic voltammogram(CV). These polymers showed the characteristic electrochemical behavior of poly(3-alkylthiophene)s with reversible redox transition in the range of 0.7-0.9 V.

Electrodeposition of Conducting Polymers on Copper in Nonaqueous Media by Corrosion Inhibition

  • Lee, Seonha;Lee, Hochun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This study demonstrates the direct anodic electrodeposition of polypyrrole (PPy), poly(3,4-ethyl-enedioxythiophene) (PEDOT), and polythiophene (PTh) on Cu electrodes by employing a corrosion inhibitor, succinonitrile (SN). SN was found to suppress anodic Cu dissolution beyond the oxidation potential of the polymer monomers. It is also revealed that the Cu surface passivated by SN is still adequately conductive to allow the redox reaction of 1,4-difluoro-2,5-dimethoxybenzene (FMB) and the oxidation of the polymer monomers. Through both cyclic voltammetry and galvanostatic techniques, PPy, PEDOT, and PTh films were successfully synthesized on Cu electrodes in the presence of SN, and the redox behaviors of the films were evaluated.

Routes to Improving Performance of Solution-Processed Organic Thin Film Transistors

  • Li, Flora M.;Hsieh, Gen-Wen;Nathan, Arokia;Beecher, Paul;Wu, Yiliang;Ong, Beng S.;Milne, William I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1051-1054
    • /
    • 2009
  • This paper investigates approaches for improving effective mobility of organic thin film transistors (OTFTs). We consider gate dielectric optimization, whereby we demonstrated >2x increase in mobility by using a silicon-rich silicon nitride ($SiN_x$) gate dielectric for polythiophene-based (PQT) OTFTs. We also engineer the dielectric-semiconductor ($SiN_x$-PQT) interface to attain a 27x increase in mobility (up to 0.22 $cm^2$/V-s) using an optimized combination of oxygen plasma and OTS SAM treatments. Augmentative material systems by combining 1-D nanomaterials (e.g., carbon nanotubes, zinc oxide nanowires) in an organic matrix for nanocomposite OTFTs provided a further boost in device performance.

  • PDF

Study on the Solvent Effect in the Coating of Conductive Polythiophene Derivative (용매에 따른 폴리싸이오펜 치환체의 전기전도성에 미치는 영향)

  • Pak, Na-Young;Lee, Seong-Min;Chung, Dae-Won
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.290-294
    • /
    • 2011
  • The surface resistance of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT/PSS), which has appeared to be one of the most successful conductive polymers, is affected by the solvent. In this paper, pellet-type PEDOT/PSS was suspended in $H_2O$, ethanol (EtOH), ethylene glycol (EG) or dimethylsulfoxide (DMSO), and coated on PET film. The surface resistances of the films made from EG or DMSO suspension were observed to be lower, nearly by 2 orders of magnitude, than that made from $H_2O$ suspension. No significant difference among four kinds of films was observed when the thermal properties and chemical structures were investigated by TGA and XPS, respectively. However, particle size of PEDOT/PSS was in the range of $1-3{\mu}m$ in EG or DMSO, on the other hand, less than $0.1{\mu}m$ in $H_2O$. It is considered that the particle size of PEDOT/PSS in the suspension plays an important role for the surface resistance.