• 제목/요약/키워드: Polyphonic sound

검색결과 7건 처리시간 0.018초

다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출 (Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks)

  • 고상선;조혜승;김형국
    • 한국음향학회지
    • /
    • 제36권4호
    • /
    • pp.267-272
    • /
    • 2017
  • 본 논문에서는 다채널 오디오 특징값을 게이트형 순환 신경망(Gated Recurrent Neural Networks, GRNN)에 적용한 효과적인 다성 사운드 이벤트 검출 방식을 제안한다. 실생활의 사운드는 여러 사운드 이벤트가 겹쳐있는 다성사운드로, 기존의 단일 채널 오디오 특징값으로는 다성 사운드에서 개별적인 이벤트의 검출이 어렵다는 한계가 있다. 이에 본 논문에서는 다채널 오디오 신호를 기반으로 추출된 특징값을 사용하여 다성 사운드 이벤트 검출에 적용하였다. 또한 본 논문에서는 현재 순환 신경망에서 가장 높은 성능을 보이는 장단기 기억 신경망(Long Short Term Memory, LSTM) 보다 간단한 GRNN을 분류에 적용하여 다성 사운드 이벤트 검출의 성능을 더욱 향상시키고자 하였다. 실험결과는 본 논문에서 제안한 방식이 기존의 방식보다 성능이 더 뛰어나다는 것을 보인다.

하모닉 구조를 이용한 다성 음악의 주요 멜로디 검출 (Extracting Predominant Melody from Polyphonic Music using Harmonic Structure)

  • 윤제열;이석필;서경학;박호종
    • 대한전자공학회논문지SP
    • /
    • 제47권5호
    • /
    • pp.109-116
    • /
    • 2010
  • 본 논문에서는 하모닉 구조를 이용하여 다성 음악의 주요 멜로디를 검출하는 방법을 제안한다. 다성 음악은 다수의 음원을 동시에 포함하므로 주요 멜로디를 검출하기 위하여 다중 기본 주파수를 추출하고 각 기본 주파수의 성질을 기반으로 주요 멜로디를 구하는 과정으로 구성된다. 하모닉 구조는 기본 주파수의 배음관계를 나타내고 단일 음원 신호의 중요한 특성 파라미터이다. 따라서 제안하는 방법은 하모닉 구조의 정확도를 기준으로 다성 음악에 존재하는 모든 기본 주파수 후보를 추출하고, 추출된 기본 주파수 후보에 대하여 하모닉 성분을 조합하여 하모닉 평균 에너지를 구하여 기본 주파수 후보의 중요도 순위를 결정한다. 마지막으로 기본 주파수 후보의 순위와 기본 주파수의 연속성을 기반으로 피치 트래킹을 진행하여 최종 주요 멜로디에 해당하는 기본 주파수를 검출한다. 제안한 방법의 성능을 ADC 2004 DB와 가요 100곡에 대하여 MIREX 2005 측정 방법에 따라 측정하였으며, ADC 2004 DB에 대하여 90.42%의 검출 정확도를 가진다.

Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High-Resolution Spectral Features

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.832-840
    • /
    • 2017
  • Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception-based spatial and spectral-domain noise-reduced harmonic features are extracted from multichannel audio and used as high-resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short-term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

Overlapping NMF와 Sparseness를 이용한 단일 채널 다성 음악의 음원 분리 (Single Channel Polyphonic Music Separation Using Sparseness and Overlapping NMF)

  • 김민제;최승진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.769-771
    • /
    • 2005
  • In this paper we present a method of separating musical instrument sound sources from their monaural mixture, where we take the harmonic structure of music into account and use the sparseness and the overlapping NMF [1] to select representative spectral basis vectors which are used to reconstruct unmixed sound. A method of spectral basis selection is illustrated and experimental results with monaural mixture of voice/cello and trumpet/viola are shown to confirm the validity of our proposed method.

  • PDF

GPU를 이용한 기타의 음 합성을 위한 효과적인 병렬 구현 (An Effective Parallel Implementation of Sound Synthesis of Guitar using GPU)

  • 강성모;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.1-8
    • /
    • 2013
  • 본 논문에서는GPU 환경에서 기타의 음합성을 위한 물리적 모델링의 효율적인 병렬구현 방법을 제안한다. 물리적 모델링을 이용하여 기타의 개방현(E2, A2, D3, G4, B3, E4)들의 기본음을 합성하기 위해 각 개방현 음 합성을 위한 적절한 필터 계수를 사용하였고, 지연 라인의 길이를 조절하였다. 또한 물리적 모델링 알고리즘을 분석한 결과 지연 라인의 길이만큼 병렬성을 갖는 것을 확인하였다. 따라서 각 개방현의 기타 음을 합성하기 위해 지연 라인의 길이만큼CUDA 코어를 할당한 후 최적의 성능을 보이도록 알고리즘을 병렬 구현하였다. 모의실험결과, GPU를 이용하여 합성한 기타 음과 원음과의 스펙트럼이 매우 유사하였고, GPU는 기존 고성능 TI DSP보다 68배, CPU보다 3배의 성능 향상을 보였다. 또한, 본 논문에서는 물리적 모델링 알고리즘을 멀티 GPU시스템에서도 구현하고 성능을 분석하였다.

블라인드 방식의 리듬 음원 분리 (Blind Rhythmic Source Separation)

  • 김민제;유지호;강경옥;최승진
    • 한국음향학회지
    • /
    • 제28권8호
    • /
    • pp.697-705
    • /
    • 2009
  • 본 논문에서는 단일 채널 다성 음악에서 리듬 악기 신호를 블라인드 (blind) 방식으로 추출하는 방법을 제안한다. 상업적으로 판매되는 음악 신호는 대부분 2개 이하만의 혼합된 채널 형태로 사용자에게 제공되는 반면, 그 혼합 채널 신호에는 각각 가창 음원 (vocal)을 비롯한 많은 종류의 악기가 포함되어 있는 형태이다. 따라서, 혼합 신호의 개수가 음원 개수와 같거나 더 많은 상황을 가정하는 기존의 음원 분리 방법처럼, 혼합 환경이나 신호의 통계적 특성을 모델링하는 것 보다는, 특정 음원의 고유 특성을 활용하는 것이 이처럼 적은 개수의 혼합 신호만을 가지고 있는 환경 (underdetermined)에 더욱 적합하다. 본 논문에서는 다른 화성 악기와 혼합되어 있는 상창에서 리듬 악기 음원만을 추출하는 것을 목표로 한다. 비음수 행렬 인수분해 (NMF: Nonnegative Matrix Factorization)의 변형된 알고리즘인 비음수 행렬의 부분적 공동 분해 (NMPCF: Nonnegative Matrix Partial Co-Factorization)가 입력 행렬의 시간적인 속성과 주파수적인 속성에서 다양한 관계성을 분석하기 위해 활용된다. 또한 특정 시간 단위로 입력 신호를 파편화 (segmentation)하고, 파편들에서 반복적으로 발생하는 성분을 리듬 악기가 공통적으로 포함하고 있는 특성이라고 가정한다. 본 논문에서 제안하는 방법은 일반적으로 받아들여질 수 있을 정도의 성능을 보여주지만, 기본적으로는 사전 정보를 활용하는 타악기 음원 분리 방식보다 우수하지는 않다. 그러나 블라인드 방식의 특성상, 사전 정보를 획득한기에 용이하지 않은 경우, 또는 사전 정보와 현격히 다른 리듬 악기가 연주되는 경우 등에 보다 유연하게 대응할 수 있다.