• Title/Summary/Keyword: Polyolefin elastomer

Search Result 14, Processing Time 0.018 seconds

The Characterization of Recycle PE/PET/TPE Blend with Compatibilizers (폐 PE/PET/TPE Blends 제조와 상용화에 따른 특성 분석)

  • Kim, Dong-Hyun;Hwang, In-Sung;Kim, Jeong-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.423-430
    • /
    • 2012
  • This study focused on the characterization of recycle PE/PET/TPE blend with compatibilizers. The heat resistance and impact strength of a weak point on PET/HDPE blend has been improved. TPE added polyester-based recycle heat-resistant properties to $150^{\circ}C$ showed more than $50^{\circ}C$ higher than HDPE added. Elastomer applied is a significant increase in the impact strength, and then it is possible to apply for safety materials in industries requiring heat-resistance and elasticity. Also using PET blend compatibilizer improves the strength of the polyolefin resin. The mechanical properties of recycle HDPE and PET blend has been greatly improved, and the reduction in the size of the dispersed phase by the addition of compatibilizers on morphology characteristics were observed uniformity becomes.

A Study on the Field Application of Superior Recycled Pavement of the Waste Asphalt (고품질 재활용 아스팔트 혼합물의 현장적용성에 대한 연구)

  • Kim, Jiwon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • Asphalt pavement waste can be recycled by crushing and heating methods with additional virgin materials and additives. In this study, a new additive using Sasol wax and Polyolefin elastomer was used for improving the quality of the Superior recycled asphalt pavement(SRP). Additive was added into the recycled mixture by 1.5% and 3% of binder content in order to have PG 70-22 and PG 76-22. Both mixtures were tested by Marshall apparatus, indirect strength testing methods, toughness testing methods, moisture susceptibility testing methods and wheel tracking testing methods. Test results met the standards of KS F 2349 and GR F 4005. Through research, it was found that these special recycled mixtures could be applied for the surface and base course of heavy traffic roads or equivalents. About 13,000 tons of the recycled mixture has been applied on Seoul Olympic road to provide new road to Hangang park for Seoul citizens.

A Study on the Selectively Block Barrier for Prevent the Spread of TPH and Phenol in the Ground (지중 내 TPH, Phenol의 확산방지를 위한 선택적 차수재 제조에 관한 연구)

  • HoJin Lim;WooRi Cho;SeungJin Oh;SuHee Kim;JaiYoung Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • In this study, a selecvively block barrier was developed to prevent the spread of contaminants (TPH, Phenol) in the ground only when contamination occurs. The materials were used Jumunjin sand, bentonite, polyolefin elastomer and spill hound marine. First, the properties and environmental hazards characteristics of materials were analyzed for evaluated their usability. Then, the possibility of use as a barrier material was confirmed by analyzing the water permeability characteristics that change after 24 hours of contact with contaminants. As a result of the analysis, the pH of each component was similar to the general groundwater pH range. In addition, the toxicity characteristics and the possibility of dissolution of hazardous substances, it was determined that there was no environmental hazard as the content was below the regulation value. Lastly, when comparing the permeability coefficient before and after contact with the contaminant, the permeability coefficient of approximately α × 10-3cm/sec before contact was reduced to α × 10-6cm/sec after contact with the contaminant.

Mechanical and Electrical Properties of Impact Polypropylene Ternary Blends for High-Voltage Power Cable Insulation Applications (고전압 전력케이블 절연체 응용을 위한 임팩트 폴리프로필렌 기반 3성분계 블렌드의 기계적 및 전기적 특성에 대한 연구)

  • Lee, Seong Hwan;Kim, Do-Kyun;Hong, Shin-Ki;Han, Jin Ah;Han, Se Won;Lee, Dae Ho;Yu, Seunggun
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.127-133
    • /
    • 2022
  • Polypropylene (PP) has been received great attention as a next-generation high-voltage power cable insulation material that can replace cross-linked polyethylene (XLPE). However, the PP cannot be used alone as an insulation material because of its high elastic modulus and vulnerability to impact, and thus is mainly utilized as a form of a copolymer with rubber phases included in the polymerization step. In this paper, a soft PP-based blend was prepared through melt-mixing of impact PP, polyolefin elastomer, and propylene-ethylene random copolymer. The elastic modulus and impact strength of the blend could properly be decreased or increased, respectively, by introducing elastomeric phases. Furthermore, the blends showed a high storage modulus even at a temperature of 100℃ or higher at which the XLPE loses its mechanical properties. In addition, the blend was found to be effective in suppressing the space charge compared to the pristine PP as well as XLPE.