• 제목/요약/키워드: Polynya

검색결과 5건 처리시간 0.021초

SAR와 광학 영상을 이용한 동남극 Terra Nova Bay 폴리냐의 발달 특성 분석 (Analysis of Development Characteristics of the Terra Nova Bay Polynya in East Antarctica by Using SAR and Optical Images)

  • 김진영;김상희;한향선
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1245-1255
    • /
    • 2022
  • 테라노바 만 폴리냐(Terra Nova Bay polynya, TNBP)는 강한 활강풍에 의해 형성되는 동남극의 대표적인 연안 폴리냐이다. TNBP는 동남극의 주요 해빙 생산지 중 하나이며 지역적 해류 순환과 주변 해양 생태계에 큰 영향을 미치기 때문에 시계열 모니터링을 통해 면적의 변화와 발달 특성을 분석하는 것이 매우 중요하다. 이 연구에서는 2007년 4월부터 2022년 4월까지 획득된 인공위성 영상레이더(synthetic aperture radar, SAR) 및 광학영상으로부터 연안 폴리냐의 대표적 특징인 Langmuir circulation에 의한 줄무늬와 폴리냐와 주변 해빙 사이의 경계를 탐지하여 TNBP의 영역을 정의하고 면적과 발달 특성을 분석하였다. TNBP는 강한 활강풍이 부는 남극의 겨울철(4-7월)에 빈번하지만 작은 면적으로 발생하는 반면, 해빙의 두께가 상대적으로 얇은 3월과 11월에는 큰 면적으로 발달하는 것이 확인되었다. 위성 관측 시각 이전의 12시간 평균 풍속은 TNBP 면적과 0.577의 상관계수를 보였으며, 이는 바람이 TNBP의 형성에 상당한 영향을 미치며 발달 과정에는 바람 이외의 다른 환경 요인들도 영향을 미칠 수 있음을 나타낸다. TNBP의 발달 방향은 풍향에 지배적인 영향을 받으며, 국지적인 해류 순환이 일부 영향을 주는 것으로 파악되었다. 이 연구의 결과는 TNBP 발달 특성의 명확한 규명을 위해 바람 외에도 해빙, 해양, 대기 관련 환경 요인들의 영향도가 복합적으로 분석되어야 함을 제시한다.

기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성 (Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica)

  • 윤승태
    • Ocean and Polar Research
    • /
    • 제44권1호
    • /
    • pp.69-82
    • /
    • 2022
  • The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

Characteristics of Southern Ocean Sea Ice Distribution Modeled Using Cavitating Fluid Rheology and Climatological Atmospheric Data

  • Yih, Hyung-Moh;Mechoso, Carlos R.
    • Journal of the korean society of oceanography
    • /
    • 제34권2호
    • /
    • pp.59-72
    • /
    • 1999
  • Cavitating fluid sea ice model of Plato and Hibler (1992) is applied to the Southern Ocean with an idealized, circular Antarctica. Using climatological atmospheric forcing fields averaged in the zonal direction, we show that oceanic heat flux and ice velocity have major effects on the seasonal change of ice edge, as other studies showed. In our model results, there appears a zone of free drift that contains a polynya zone. Thermodynamic forcing functions make dominant contributions to daily increments of ice thickness and compactness, except the zones of ice edge and polynya. The dominant contributions are also shown in distributions of the temperature on ice surface and several to terms in surface heat balance equation, and are also confirmed by those obtained from the thermodynamic-only model with the different locations of ice edge.

  • PDF

해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션 (Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica)

  • 김태균;진경;나지성;이춘기;이원상;문재홍
    • Ocean and Polar Research
    • /
    • 제44권4호
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

남극 아문젠해에서 해수 중 Mn의 분포 특성 (Manganese in Seawaters of the Amundsen Sea, Antarctic)

  • 장동준;최만식;박종규;박경규;홍진솔;이상훈;정진영
    • Ocean and Polar Research
    • /
    • 제41권2호
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.