• Title/Summary/Keyword: Polynomial fuzzy systems

Search Result 117, Processing Time 0.041 seconds

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Optimal Identification of Data Granules-based Genetically Optimized Fuzzy Relation Polynomial Neural Networks (데이터 입자 기반 유전론적 퍼지 관계 다항식 뉴럴네트워크의 최적 동정)

  • Lee In-Tae;Lee Young-Il;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • 본 논문에서는 정보 입자화와 유전자 알고리즘을 기반으로 최적 퍼지 다항식 뉴럴네트워크를 제안하고, 유전자 알고리즘을 사용하여 종합적인 설계방법을 개발한다. 제안된 모델은 기존의 진화론적 퍼지 다항식 뉴럴네트워크의 구조를 정보입자화를 통해 좀 더 빠르게 최적의 해공간에 접근시키는데 그 목적이 있다. 퍼지 관계기반 다항식 뉴럴네트워크는 퍼지 다항식 뉴론이 기초가 되어 가능한 구조적이고 요소적으로 모델의 성능을 향상 시켜준다. 퍼지 다항식 뉴런의 최적 구조를 위해 유전자 알고리즘을 이용하여 입력변수의 수와 후반부 다항식의 차수 입력변수 수에 따른 입력변수 그리고 멤버쉽 함수의 수를 동조한다. 여기서, 클러스터링의 하나의 방법인 HCM에 의해 퍼지 규칙 각각의 전반부와 후반부에 데이터 중심값을 이용하여 다항식함수의 파라미터값을 결정한다. 제안된 유전론적 퍼지 관계 다항식 뉴럴네트워크의 성능평가는 기존 퍼지 모델링에서 이용된 표준 데이터를 활용하여 평가한다.

  • PDF

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF

Development of New Algorithm for RWA Problem Solution on an Optical Multi-Networks

  • Tack, Han-Ho;Kim, Chang-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • This paper considers the problem of routing connections in a optical multi tree networks using WDM (Wavelength Division Multiplexing), where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, so that connections whose paths share a common link in the network are assigned different wavelengths. The problem of optimal coloring of the paths on the optical multi-networks is NP-hard[1], but if that is the coloring of all paths, then there exists efficient polynomial time algorithm. In this paper, using a "divide & conquer" method, we give efficient algorithm to assign wavelengths to all the paths of a tree network based on the theory of [7]. Here, our time complexity is 0(n4log n).

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

Design of Real-time Face Recognition Systems Based on Data-Preprocessing and Neuro-Fuzzy Networks for the Improvement of Recognition Rate (인식률 향상을 위한 데이터 전처리와 Neuro-Fuzzy 네트워크 기반의 실시간 얼굴 인식 시스템 설계)

  • Yoo, Sung-Hoon;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1952-1953
    • /
    • 2011
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis function Neural Network)을 설계하고 이를 n-클래스 패턴 분류 문제에 적용한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉층으로 전달하는 기능을 수행하고 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 패턴분류기의 최적화는 PSO(Particle Swarm Optimization)알고리즘을 통해 이루어진다. 그리고 제안된 패턴분류기는 실제 얼굴인식 시스템으로 응용하여 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출, 특징 추출 등과 같은 처리 과정을 포함하여 서로 다른 등록인물의 n-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석해본다.

  • PDF

Design of Polynomial Interval Type-2 TSK FLS and Its Application to Nonlinear System (다항식 Interval Type-2 TSK FLS 설계와 비선형 시스템으로의 응용)

  • Kim, Gil-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.57-58
    • /
    • 2008
  • Type-2 퍼지 집합은 언어의 불확실성을 다루기 위하여 고안된 Type-1 퍼지집합의 확장이다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 Mamdani FLS과 함께 가장 널리 사용되는 퍼지 로직 시스템 모델이다. 본 논문에서는 Type-2 퍼지 집합을 이용하여 전반부 멤버쉽 함수를 구성하고 후반부 다항식 함수를 상수와 1차식, 2차식으로 확장한 다항식 Type-2 TSK FLS 설계한다. 다항식 Type-2 TSK FLS의 파라미터를 동정하기 위해 Back-propagation 방법을 사용한다. 제안된 다항식 Type-2 TSK FLS을 노이즈 섞인 비선형 시스템의 모델링에 적용하여 그 성능을 비교 분석한다.

  • PDF

Intelligent Auto-Tuning for Adaptive Control of DC Motor System with Load Inertia of Great Variation

  • Woraphojn Khongphasook;Vipan Prijapanij;anant, Phornsuk-Ratiroch;Jongkol Ngamwiwit;Hiroshi Hirata
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.442-442
    • /
    • 2000
  • The intelligent auto-tuning method fur a strongly stable adaptive control system of a DC motor with great load inertia variation is proposed. The stable characteristic polynomial that is designed by an optimal servo is specified for the adaptive pole placement control system. The appropriate adaptive control system can be derived, by adjusting automatically the weight of a performance criterion in optimal control by means of the fuzzy inference on the basis of the stability index.

  • PDF

Evolutionarily Optimized Design of Self-Organized Fuzzy Polynomial Neural Networks by Means of Dynamic Search Method of Genetic Algorithms (유전자 알고리즘의 동적 탐색 방법을 이용한 자기구성 퍼지 다항식 뉴럴 네트워크의 진화론적 최적화 설계)

  • Park Ho-Sung;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • 본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식뉴론(FPM)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴릴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPH의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들-입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

  • PDF