• 제목/요약/키워드: Polynomial Regression Analysis

검색결과 172건 처리시간 0.025초

주성분회귀분석을 활용한 다항회귀분석 성능개선: PGF 수치역변환 사례를 중심으로 (Improving Polynomial Regression Using Principal Components Regression With the Example of the Numerical Inversion of Probability Generating Function)

  • 양원석;박현민
    • 한국콘텐츠학회논문지
    • /
    • 제15권1호
    • /
    • pp.475-481
    • /
    • 2015
  • 종속변수와 설명변수 사이의 관계가 선형이 아닌 경우에는 비선형 관계를 반영할 수 있는 다항회귀분석을 이용하여 회귀분석을 수행한다. 한편, 다항회귀분석에는 설명변수의 거듭제곱항들이 설명변수에 추가되므로 설명변수들 사이에 상관관계가 발생하여 다항회귀모형의 성능 저하 문제가 발생할 수 있다. 본 논문에서는 PGF 수치역변환 문제를 사례로 하여 주성분회귀분석을 통해 다항회귀분석의 성능을 극적으로 향상시킬 수 있음을 보인다. 본 논문에서는 PGF의 정의를 이용하여 PGF를 다항회귀분석으로 모형화한다. 다항회귀분석을 이용하여 PGF 전개식의 회귀계수를 추정하면 회귀계수의 추정 자체가 불가능하거나 계수 추정의 정확성이 저하되는 문제가 발생한다. 이 경우 다항회귀분석에 주성분회귀분석을 적용하면 계수 추정의 정확도가 극적으로 향상되어 다항회귀분석의 계수 추정 시 발생하는 문제를 해결할 수 있음을 밝힌다.

MAU프로펠러 단독특성의 수식표현 (Polynomial Representation for MAU-Propeller Open Water Characteristics)

  • 서정천;이창섭
    • 한국기계연구소 소보
    • /
    • 통권11호
    • /
    • pp.95-101
    • /
    • 1984
  • The MAU-series propellers were designed and tested in japan. This report presents the polynomial coefficients of open water Characteristics for each standard MAU-series propellers, obtained by multiple polynomial regression analysis in terms of pitch-diameter ratio and advance coefficient. The limitation of applicability and the accuracy of the regression polynomial are also discussed.

  • PDF

다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구 (A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis)

  • 채규수
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.1-6
    • /
    • 2019
  • 본 연구에서는 다항식 회귀분석(Polynomial regression analysis) 방법을 이용하여 비선형 특성을 갖는 전자저울의 질량 추정 모델 개발이 이루어 졌다. 전자저울에 사용되는 로드셀의 출력 단자 전압을 기준 질량 추를 사용하여 직접 측정하였고 이 데이터를 이용하여 MS Office 엑셀의 행렬식 계산과 데이터 추세선 분석 기능을 이용하여 다항식 회귀모델을 구하였다. 5kg까지 측정 가능한 로드셀 전자저울을 사용하여 100g단위로 질량을 측정하였고 다항식 회귀분석(Multiple regression analysis) 모델을 구하였으며, 단순(1차), 2차, 3차 다항식 회귀분석에 대한 오차를 구하였다. 각 모델에 대한 회귀 방정식의 적합도 분석을 위해 결정계수(Coefficient of determination)를 제시하여 추정 질량과 측정 데이터와의 상관관계를 나타내었다. 본 연구에서 제안하는 3차 다항식 모델을 이용하여 추정 값의 표준편차가 10g, 결정계수 1.0으로 상당히 정확한 모델을 얻었다. 본 연구에 사용된 선형 회귀 분석 이론을 바탕으로 최근 인공지능 분야에서 많이 사용되고 있는 로지스틱 회귀 분석(Logistic regression analysis)을 활용하여 기상예측, 신약개발, 경제지표 분석 등의 분야에 대한 다양한 연구를 수행할 수 있을 것으로 생각된다.

FUZZY POLYNOMIAL REGRESSION ANALYSIS USING SHAPE PRESERVING IOERATION

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.869-880
    • /
    • 2001
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input-output data using shape preserving operations based on Tanaka’s approach. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using general linear program.

Fuzzy least squares polynomial regression analysis using shape preserving operations

  • Hong, Dug-Hun;Hwang, Chang-Ha;Do, Hae-Young
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.571-575
    • /
    • 2003
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using mixed nonlinear program.

다항회귀분석을 활용한 혼합경량토의 강도산정 모델 개발 (Development of Strength Prediction Model for Lightweight Soil Using Polynomial Regression Analysis)

  • 임병권;김윤태
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.39-47
    • /
    • 2012
  • The objective of this study was to develop a strength prediction model using a polynomial regression analysis based on the experimental results obtained from ninety samples. As the results of a correlation analysis between various mixing factors and unconfined compressive strength using SPSS (statistical package for the social sciences), the governing factors in the strength of lightweight soil were found to be the crumb rubber content, bottom ash content,and water-cement ratio. After selecting the governing factors affecting the strength through the correlation analysis, a strength prediction model, which consisted of the selected governing factors, was developed using the polynomial regression analysis. The strengths calculated from the proposed model were similar to those resulting from laboratory tests (R2=87.5%). Therefore, the proposed model can be used to predict the strength of lightweight mixtures with various mixing ratios without time-consuming experimental tests.

빅데이터분석을 통한 도시철도 역사부하 패턴 분석 (Analysis of Electrical Loads in the Urban Railway Station by Big Data Analysis)

  • 박종영
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.460-466
    • /
    • 2018
  • For the efficient energy consumption in an urban railway station, it is necessary to know the patterns of electrical loads for each usage in detail. The electrical loads in an urban railway station have different characteristics from other normal electrical load, such as the peak load timing during a day. The lighting, HVAC, communication, and commercial loads make up large amount of electrical load for equipment in an urban railway station, and each of them has the unique specificity. These loads for each usage were estimated without measuring device by the polynomial regression method with big data such as total amount of electrical load and weather data. In the simulation with real data, the optimal polynomial regression model was third order polynomial regression model with 9 or 10 independent variables.

Regression and Correlation Analysis via Dynamic Graphs

  • Kang, Hee Mo;Sim, Songyong
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.695-705
    • /
    • 2003
  • In this article, we propose a regression and correlation analysis via dynamic graphs and implement them in Java Web Start. For the polynomial relations between dependent and independent variables, dynamic graphics are implemented for both polynomial regression and spline estimates for an instant model selection. The results include basic statistics. They are available both as a web-based service and an application.

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • 제4권5호
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

부영양상태 호수유역의 강우유출수에 의한 초기세척효과 분석 (An Analysis on the First Flush Phenomenon by Stormwater Runoff in Eutrophic Lake Watershed)

  • 조재현;서형준
    • 환경영향평가
    • /
    • 제16권5호
    • /
    • pp.341-350
    • /
    • 2007
  • Lake Youngrang is a lagoon whose effluent flows into the East Sea. Because two resort towns and two golf courses are situated at the lake basin, many tourists visit this area. Stormwater runoff surveys were carried out for the eight storm events from 2004 to 2005 in the eutrophic lake watershed to give a basic data for the diffuse pollution control of the lake. Dimensionless mass-volume curves indicating the distribution of pollutant mass vs. volume were used to analyze the first flush phenomenon. The mass-volume curves were fitted with a power function and polynomial equation curves. The regression analysis showed that the polynomial equation curves were better than the power function in representing the tendency of the first flush, and second degree polynomial equation curves indicated the strength of the first flush effectively.