This research is to design an effective prefetching method required for DRAM-PCM hybrid main memory systems especially used for big data applications and massive-scale computing environment. Conventional prefetchers perform well with regular memory access patterns. However, workloads such as graph processing show extremely irregular memory access characteristics and thus could not be prefetched accurately. Therefore, this research proposes an efficient dynamical prefetching algorithm based on the regression method. We have designed an intelligent prefetch engine that can identify the characteristics of the memory access sequences. It can perform regular, linear regression or polynomial regression predictive analysis based on the memory access sequences' characteristics, and dynamically determine the number of pages required for prefetching. Besides, we also present a DRAM-PCM hybrid memory structure, which can reduce the energy cost and solve the conventional DRAM memory system's thermal problem. Experiment result shows that the performance has increased by 40%, compared with the conventional DRAM memory structure.
Communications for Statistical Applications and Methods
/
제9권1호
/
pp.229-240
/
2002
Whether to use linear or quadratic model in the analysis of regression data is one of the important problems in classical regression model and measurement error model (MEM). In MEM, four goodness of fit test statistics are available In solving that problem. Two are from the derivation of estimators of quadratic MEM, and one is from that of the general $k^{th}$-order polynomial MEM. The fourth one is derived as a variation of goodness of fit test statistic used in linear MEM. The purpose of this paper is to find the most powerful test statistic among them through the small-scale simulation.
Communications for Statistical Applications and Methods
/
제19권2호
/
pp.293-301
/
2012
Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.
Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
Journal of the Korean Statistical Society
/
제33권4호
/
pp.367-379
/
2004
This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.
성공적인 프로젝트 계획은 활용 가능한 일정과 더불어 프로젝트를 완수하는데 요구되는 노력을 얼마나 정확히 추정하느냐에 달려있다. 새로운 또는 보다 나은 모델 개발에 많은 연구가 이루어졌지만 현존하는 소프트웨어 노력 추정 모델들은 개발 전순기에 대해 투입되는 총 개발노력과 단위시간당 소요되는 인력인 노력 함수만을 제공한다. 또한, Putnam은 세부단계별로 일정한 개발노력 투입 비율을 제시하였다. 그러나 소프트웨어의 규모, 복잡도와 운영환경의 영향으로 인해 프로젝트 별로 투입되는 총 개발노력의 규모에 차이가 발생하며, 그 결과, 개발 세부단계별로 투입되는 노력의 규모도 프로젝트마다 차이가 발생한다. 본 논문은 총 개발노력 변동에 따른 소프트웨어의 명세화, 구축과 시험단계에 투입될 개발노력을 추정하는 선형과 다항식 모델을 제시하였다. 이 모델들은 128개의 다른 소프트웨어 프로젝트들로부터 유도되었다. 제안된 모델은 프로젝트의 일정과 노력 할당 관리에 실질적인 지침을 제공할 것이다.
This paper describes motion errors due to acceleration and deceleration types of servo motors in NC machine tools. Motion errors are composed of two components : one is due to transient response of a servomechanism and the other comes from gain mismatching of positioning servo motors. It deals with circular interpolation to identify motion errors by using Interface card. Also in order to minimize motion errors, this study presents an effective method to optimize parameters which are connected with motion errors. The proposed method is based upon a second order polynomial regression model and it includes an orthogonal array method to make the effective results of experiments. The validity and reliability of the study were verified on a vertical machining center equipped with FANUC 0MC through a series of experiments and analysis.
본 논문에서는 DSP(Digital Signal Processor)를 이용하여 LED(Light Emitting Diode)에 전류 또는 전압을 공급하고, 이에 따라 나타나는 전압 또는 전류 특성을 분석하는 시스템에서, 전원 공급 또는 측정하는 회로의 비선형 오차 및 임의로 발생하는 오차를 감소시키는 방법을 제안하였다. 임의 오차를 줄이기 위해서는 재귀 평균 방법을 이용하였으며, 비선형 오차를 줄이기 위해서는 보정과정에서 획득한 데이터들을 2차 다항 회귀분석 방법을 이용하여 보정계수를 구하였으며, 이를 이용하여 LED를 생산 시 측정하는 항목인 역방향전류(IR), 역방향 전압(VR), 순방향전압(VF1, VF2, VF3)에 적용하여 오차를 교정하였다. 실험 결과에서는 오차율이 0.017 ~ 0.043 %로 관찰되었다.
Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.
Objective of this study was to investigate effects of pre-processing method and number of sampling leaves on stability of the reflectance measurement for Chinese cabbage and kale leaves. Chinese cabbage and kale were transplanted and cultivated in a plant factory. Leaf samples of the kale and cabbage were collected at 4 weeks after transplanting of the seedlings. Spectra data were collected with an UV/VIS/NIR spectrometer in the wavelength region from 190 to 1130 nm. All leaves (mature and young leaves) were measured on 9 and 12 points in the blade part in the upper area for kale and cabbage leaves, respectively. To reduce the spectral noise, the raw spectral data were preprocessed by different methods: i) moving average, ii) Savitzky-Golay filter, iii) local regression using weighted linear least squares and a $1^{st}$ degree polynomial model (lowess), iv) local regression using weighted linear least squares and a $2^{nd}$ degree polynomial model (loess), v) a robust version of 'lowess', vi) a robust version of 'loess', with 7, 11, 15 smoothing points. Effects of number of sampling leaves were investigated by reflectance difference (RD) and cross-correlation (CC) methods. Results indicated that the contribution of the spectral data collected at 4 sampling leaves were good for both of the crops for reflectance measurement that does not change stability of measurement much. Furthermore, moving average method with 11 smoothing points was believed to provide reliable pre-processed data for further analysis.
A method is proposed for the simultaneous optimization of several response functions that depend on the same set of controllable variables and are adequately represented by a response surface model (polynomial regression model) with the same degree and with constraint that the individual responses have the target values. First, the multiple responses data are checked for linear dependencies among the responses by eigenvalue analysis. Thus a set of responses with no linear functional relationships is used in developing a function that measures the distance estimated responses from the target values. We choose the optimal condition that minimizes this measure. Also, under the different degree of importance two step procedures are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.