• Title/Summary/Keyword: Polymethyl Methacrylate(PMMA)

Search Result 159, Processing Time 0.031 seconds

A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes (제어방출형 소독제의 약물전달 체로 사용된 폴리머 유형에 따른 클로르헥시딘 제어 방출속도 비교)

  • Bok Young-Bin;Lee Doug-Youn;Lee Chang-Young;Kim Kyung-Nam;Kum Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.548-552
    • /
    • 2004
  • Intracanal disinfection of infected root canal is one of important treatment procedure. This in vitro study aimed to evaluate whether the surface polymers of controlled release drug (CRD) can effectively control the release rate of chlorhexidine for root canal disinfection. Four CRD prototypes were prepared: Group A (n=12); The core device (absorbent paper point) was loaded with 40% CHX solution as control. Group B (n=12); same as group A, but the device was coated with chitosan. Group C (n=12); same as group A and then coated three times with 5% PMMA. Group D (n=12); same as group A and then coated three times with 3% PLGA. All CRD prototypes were soaked in 3 mL distilled water for experimental periods and the concentrations of released CHX from each CRD prototype were determined using a UV spectrophotometer. Results showed that release rate of CHX were the greatest in the non-coated group (control group), followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). This data indicate that surface polymers can control the release rate of CHX from the CRD prototypes.

Experimental and numerical study on viscoelastic behavior of polymer during hot embossing process (핫엠보싱 공정의 폴리머 점탄성 거동에 대한 연구)

  • Song, N.H.;Son, J.W.;Rhim, S.H.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.191-194
    • /
    • 2007
  • In hot embossing lithography which has shown to be a good method to fabricate polymeric patterns for IT and bio components, it is very important to determine the proper process conditions of pressure, temperature, and time. It is also a key factor for predicting the optical properties of final product to calculate residual stress distribution after the embossing process. Therefore, to design the optimum process with right conditions, the ability to predict viscoelastic behavior of polymer during and after the hot embossing process is required. The objective of the present investigation is to establish simulation technique based on constitutive modeling of polymer with experiments. To analyze deformation behavior of viscoelastic polymer, the large strain material properties were obtained from quasi-static compression tests at different strain rates and temperatures and also stress relaxation tests were executed. With this viscoelastic material model, finite element simulation of hot embossing was executed and stress distribution is obtained. Proper process pressure is very important to predict the defect and incomplete filling.

  • PDF

Numerical Analysis Based on Continuum Hypothesis in Nano-imprining process (연속체 개념에 기반한 나노 임프린트 공정해석 연구)

  • 김현칠;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.333-338
    • /
    • 2003
  • Nano-imprint lithography(NIL) is a polymer embossing technique, capable of transferring nano-scale patterns onto a thin film of thermoplastics such as polymethyl methacrylate(PMMA) using this parallel process. Feature size down 10 nm have been demonstrated. In NIL, the pattern is formed by displacing polymer material, which can be squeeze flow of a viscous liquid. Due to the size of the pattern, a thorough understood of the process through experiments may be very different. Therefore we nead to resort to numerical simulation on the embossing process. Generally, there are two ways of numerical simulation on nano-scale flow, namely top-down and bottom-up approach. Top-down approach is a way to simulate the flow assuming that polymer is a continuum. On the contrary, in the bottom-up approach, simulation is peformed using molecular dynamics(MD). However, as latter method is not feasible yet. we chose the top-down approach. For the numerical analysis, two dimensional moving grid was used since the moving grid can predict the flow front. Effects of surface tension as well as the slip at the boundary were also considered.

  • PDF

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.537-543
    • /
    • 2008
  • Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams

  • Lee, Kyong Sei;Ahn, Sung Hwan;Han, Youngyih;Hong, Byungsik;Kim, Sang Yeol;Park, Sung Keun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.297-304
    • /
    • 2015
  • A multilayer gaseous detector has been developed for fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy. The detector, which was constructed with eight thin parallel-plate ionization chambers (PPICs) and polymethyl methacrylate (PMMA) absorber plates, is closely tissue-equivalent in a beam's eye view. The gas-electron signals, collected on the strips and pad arrays of each PPIC, were amplified and processed with a continuous charge.integration mode. The detector was tested with 190-MeV raster-scan-mode beams that were provided by the Proton Therapy Facility at Samsung Medical Center, Seoul, South Korea. The detector responses of the PPICs for a 190-MeV raster-scan-mode proton beam agreed well with the dose data, measured using a 2D ionization chamber array (Octavius model, PTW). Furthermore, in this study it was confirmed that the detector simultaneously tracked the doses induced at the PPICs by the fast-oscillating beam, with a scanning speed of 2 m s-1. Thus, it is anticipated that the present detector, composed of thin PPICs and operating in charge.integration mode, will allow medical scientists to perform reliable fast dose-verification measurements for typical dynamic mode therapeutic beams.

Excimer Laser Ablation of Polymer for Electroformed Mold (전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션)

  • Lee Jae Hoon;Shin Dong Sig;Suh Jeong;Kim To Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

Preparation and Application of Functional Carbon Whisker Membrane for Separation Process

  • Bae, Sang-Dae;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1235-1241
    • /
    • 2008
  • Membrane separation is extensively used for water/wastewater treatment because of its efficiency separation processes. However, particles in the feed water can deposit and accumulate on the membrane surface to created cake layer. As a consequence, the selectivity of the membrane and flux through the membrane are decreased, which is called fouling/blocking phenomenon. In order to solve fouling problem, we developed a novel membrane named Carbon Whisker Membrane (CWM) which contains vapor-grown carbon fibers/whiskers on the surface of the membrane and a layer of carbon film coated on the ceramic substrate. We firstly employed polymethyl methacrylate (PMMA) as a testing material to investigate the fouling mechanism. The results suggested that Carbon Whiskers on the surface of the membrane can prevent the directly contact between the membrane body and particles so that the fouling/blocking could not occurred easily compared to the membrane without carbon whiskers. We also researched the relationship with the diameter, density of carbon whisker on the membrane surface and total flux of solutions. Finally, we will be able to control the diameter and density of carbon whiskers on the membrane and existence of carbon whiskers on the membrane, it is important factor, might be prevent fouling/blocking in the water treatment.

Fabrication of Organic Thin Film Transistors using Printed Electrodes (프린팅 방법으로 형성된 전극을 이용한 유기 박막 트랜지스터의 제작 및 특성 분석)

  • Kim, Jung-Min;Seo, Il;Kim, Young-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1336_1337
    • /
    • 2009
  • 본 논문에서는 유기 박막 트랜지스터의 전극을 잉크젯 프린팅과 스크린 프린팅 방법을 이용하여 유기 박막 트랜지스터를 제작하였다. 전극으로 PEDOT:PSS와 Ag 잉크를 사용하였고, 게이트 절연막으로 polymethyl methacrylate (PMMA)와 poly(4-vinylphenol) (PVP)를 사용하였다. 유기물 활성층으로 pentacene을 진공 증착하였다. 잉크젯 프린팅 방법을 이용하여 제작한 유기 박막 트랜지스터는 전계이동도 (${\mu}_{FET}$) $0.068\;cm^2$/Vs, 문턱전압 ($V_{th}$) -15 V, 전류 점멸비 ($I_{on}/I_{off}$ current ratio) >$10^4$의 전기적 특성을 보였고, 스크린 인쇄 방법을 이용하여 제작한 유기 박막 트랜지스터는 전계이동도 (${\mu}_{FET}$) $0.016\;cm^2$/Vs, 문턱전압 ($V_{th}$) 6 V, 전류 점멸비 ($I_{on}/I_{off}$ current ratio) >$10^4$의 전기적 특성을 보였다. 이를 통하여 프린팅 방법을 이용한 유기 박막 트랜지스터 단일 소자 및 유기 전자 회로 제작의 가능성을 확인 하였다.

  • PDF

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Improvement of Graphene's Electrical Properties by ICP Cleaning

  • Gang, Sa-Rang;Ra, Chang-Ho;Yu, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.629-629
    • /
    • 2013
  • Graphene is a carbon based material and it has intriguing features, such as phenomenally strong, thin, flexible, transparent and conductive, those make it attractive for a broad range of applications.Unfortunately, graphene is extremely sensitive to contamination. When we fabricate graphene devices, electrical properties of graphene are altered [1], and the charge carrier mobility drops accordingly by orders of magnitude. This significant impact on electron mobility occurs because any surrounding medium could act as a dominant source of extrinsic scattering, which effectively reduces the mean free path of carriers [2,3]. The dominant contaminant is generated through fabrication stage by polymethyl methacrylate (PMMA) [4], or photo resist (PR). Surface contamination by these residues has long been a critical problem in probing graphene's intrinsic properties. If we clearly solve this problem, we can get highly performed graphene devices. Here, we will report on graphene cleaning process by Induced Coupled Plasma (ICP). We demonstrated how much decomposition of residue impact on improving electrical properties of graphene.

  • PDF