• Title/Summary/Keyword: Polymerization method

Search Result 655, Processing Time 0.028 seconds

A New Method to Measure the Conversion of Radiation Polymerization of Electrolyte Monomer Diallyldimethylammonium Chloride in Dilute Aqueous Solution

  • Zhang, Yalong;Yi, Min;Ren, Jing;Zhai, Maolin;Ha, Hongfei
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.146-151
    • /
    • 2003
  • The dependence of electrical conductivity on concentrations of diallyldimethylammonium chloride (DADMAC) monomer, linear poly(DADMAC) and their mixture monomer/poly(DADMAC) in dilute aqueous solution exhibits a linear relationship. It was possible to calculate conversion of DADMAC polymerization by measuring its electric conductivity. Although the electrical conductivity of the poly(DADMAC) solution decreased with increasing its molecular weight, in the process of UV or ionizing radiation polymerization the molecular weight of the polymers could be kept constant in the case of fixed temperature, UV-luminous intensity or dose rate. Based on the method mentioned above, the kinetics of UV induced polymerization of DADMAC in aqueous solution was studied; the overall activation energy of polymerization of DADMAC in the water phase was calculated to be 18.8 kJ mol$^{-1}$ . ${\gamma}$-Radiation-induced polymerization of DADMAC in aqueous solution as a function of absorbed dose was studied as well. The conversion of DADMAC increased quickly with dose before 30 kGy and then increased slowly. The experimental data of both UV- and ${\gamma}$-induced polymerization were verified to be reliable by inverted ultracentrifugation method.

Comparative Study of Polymerization Environment for Hydrogel Ophthalmic Lens

  • Kim, Duck-Hyun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.696-701
    • /
    • 2018
  • This study is carried out to evaluate the commercial feasibility of the room temperature and thermal polymerization method as a lens manufacturing method. All samples are found to be transparent after polymerization, thereby indicating that their physical and surface properties are suitable for hydrogel ophthalmic lenses. The optical and physical properties of the lenses are compared. The water content of the samples that are prepared via a room temperature polymerization process decreases with the addition of MMA as compared to the water content of the samples that are prepared via thermal polymerization. When MMA and DMA are used as an additive for improving functionality, the wettability of the lenses increases. By measuring the AFM, the surface roughness is shown to improve more than MMA and DMA. Therefore, it is judged to be an appropriate process for manufacturing hydrogel lenses with high functionality.

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

The Preparation of D-Phenylalanine Imprinted Microbeads by a Novel Method of Modified Suspension Polymerization

  • Khan, Hamayun;Park, Joong-Kon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.503-509
    • /
    • 2006
  • Molecularly imprinted polymeric microbeads (MIPMs) were prepared by the suspension and modified suspension polymerization methods using D-phenylalanine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, toluene as the porogen, polyvinyl alcohol as the stabilizer, and sodium dodecyl sulfate as the surfactant. The addition of a surfactant to the conventional suspension polymerization mixture decreased the mean particle size of the MIPMs and increased the adsorption selectivity. For the modified suspension polymerization method, the mean particle size of the MIPMs was smaller than the particle size of MIPMs prepared via conventional suspension polymerization. Moreover, the adsorption selectivity improved considerably compared to the adsorption selectivities of MIPs reported previously.

Temperature control of a batch PS polymerization reactor using on-line two-step method (온라인 2단계 방법을 이용한 회분식 PS 중합반응기의 온도제어)

  • 이병모;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.305-308
    • /
    • 1997
  • The on-line calculation method is developed to obtain the temperature trajectory that brings the reactants to the desired state in batch styrene polymerization reactor. The temperature trajectory is obtained by applying the moments of the polymer concentration to the 2-step calculation method. The computer simulation is also carried out to verify the superiority of the on-line method to the off-line one. When a temperature disturbance of constant size is introduced, the off-line results shows considerable deviation from the target degree of polymerization. The on-line strategy set up a new trajectory to reach the desired state by using the current state of the reactor. Therefore, the on-line strategy deals with the changes of the system more adequately than the off-line strategy.

  • PDF

Emulsion Polymerization of Vinyl Acetate Using AAPH (AAPH를 이용한 아세트산비닐의 유화중합)

  • Kwak, Jin-Woo;Kim, Joon-Ho;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.13-16
    • /
    • 2003
  • Vinyl acetate monomer can be polymerized through bulk, solution, emulsion, and suspension polymerization processes. However, in the preparation of PVA from bulk or solution polymerization, there are several technical limitations for obtaining high yield and high molecular weight simultaneously. Thus, the improvement of polymerization method is necessary to prepare the PVA with high yield and high molecular weight because that the difficulty in control of high viscosity and in removal of the heat of polymerization, which might lead to side reactions like branching. (omitted)

  • PDF

Disordering of Clay Layers in the Nylon 6/Clay Nanocomposites Prepared by Anionic Polymerization

  • Park Jung Hoon;Kim Woo Nyon;Kye Hyoung-san;Lee Sang-Soo;Park Min;Kim Junkyung;Lim Soonho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.367-372
    • /
    • 2005
  • As a preliminary work for the preparation of nylon 6/c1ay nanocomposites by reactive extrusion, nylon 6/c1ay nanocomposites were prepared by anionic polymerization in a flask. In order to investigate the effect of the intercalation of clay layers, the clay feeding times, such as in pre-mixing where the clay was fed before initiation of polymerization and in after-mixing method where the clay was fed after initiation of polymerization, were changed. The appearance of the WAXD peak of nanocomposites prepared by the pre-mixing method was obvious and the tensile strength was decreased compared with that of pure nylon 6, which indicates that the clay layers were not dispersed and distributed. During the preparation of the nanocomposites by the after-mixing method, disordering of the clay layers was observed with increasing clay addition time and was suspected to result from the rapid polymerization of nylon 6 within the clay layers.

Reaction Condition Dependency of Propagating Behavior in the Polymerization Reaction by Thermal Front

  • Huh, Do-Sung;Choe, Sang-Joon;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.325-329
    • /
    • 2002
  • In this study, the dependency of the behavior of propagating front on the reaction condition in frontal polymerization reaction has been studied. We have used some multifunctional acrylates as a monomer and ammonium persulfate as an initiator for the polymerization reactions. In frontal polymerization, a method of producing polymeric materials via a thermal front that propagates through the unreacted monomer/initiator solution, the behavior of self propagating front shows various dynamic patterns depending on the reaction condition. We have obtained some spin modes of propagating front in the number of 'hot spots' or 'spin heads' by changing the reaction condition. The effect of the reactor tube diameter on the mode of propagating front has also been studied by using some reactor tubes with different size of tube diameter and it has been examined in some detail by adopting an experimental method of two-tubes system.

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

Optical Properties for Plasma Polymerization Thin Films Using Envelope Method By Spectrophotometry (ENVELOPE METHOD를 이용한 플라즈마 중합 유기박막의 광학특성)

  • Yoo, D.C.;Park, G.B.;Lee, D.C.;HwqangBo, C.K.;Jin, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.183-186
    • /
    • 1991
  • In order to prepare the functional organic optic meterials, the capacitive coupled gas flow type plasma polymerization apparatus was designed and manufactured. Styrene and para-Xylene monomer were adopt as organic materisl. Optical constant, refrative index, extinction coefficient of organic thin films by the gas flow type plasma polymerization appratus were determined by envelope method using spectrophotometry. The refractive index of plasma polymerized thin films was decreased in accordance to increase of wave length and discharge time. The extinction coefficient was very small compared with refractive index. From the experimental result of optical constant and film thickness, it was considered that the films which had required optical properties and thickness can be prepared by control of polymerization condition.

  • PDF