• 제목/요약/키워드: Polymeric gel

검색결과 104건 처리시간 0.026초

수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발 (Development of EDLC using aqueous polymeric gel electrolytel)

  • 오길훈;김한주;최원경;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

이산화탄소 포집용 폴리비닐아세테이트-이온성액체 막 (Poly (vinyl acetate)-Ionic Liquids Membranes for $CO_2$ Capture)

  • 이상진;최수현;백일현
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2010년도 춘계학술 발표회
    • /
    • pp.199-199
    • /
    • 2010
  • Polymeric membranes have been widely used to separate gas mixtures, such as $O_2/N_2,\;CO_2/CH_4,\;CO_2/N_2$, and olefin/paraffin. The permeation selectivity is the ratio between composition ratio at the permeate side and composition ratio at the feed side. In addition, the permeation selectivity is a product of solubility selectivity and diffusivity selectivity. We present a novel idea and describe its experimental result, which was achieved by preparing polymer gel films that included a room temperature ionic liquid (RTIL) in a polymer matrix. It is known that $CO_2$ can dissolve easily in imidazolium-based RTILs. We prepared polymer-ionic liquid gel films using an ionic liquid, 1-ethyl-3-methylimidazolium acetate ([emim] acetate, C-tri) and a host polymer, poly (vinyl acetate) (PVAc, Aldrich).

  • PDF

졸-겔법으로 백금 기판위에 제조된 PLZT 박막의 구조적, 전기적 특성변화 (Structural and Electrical Characteristics of Ferroelectric PLZT Thin Film Prepared on Pt Substrate by Sol-Gel Route)

  • 오영제;김태송;정형진
    • 한국세라믹학회지
    • /
    • 제31권2호
    • /
    • pp.171-176
    • /
    • 1994
  • The spin-casted PLZT(9/65/35) thin films through polymeric sol-gel process were prepared on Pt substrate. The crack-free, uniform and dense films were obtained by post-annealing at the temperature between 35$0^{\circ}C$ and $700^{\circ}C$. The composite structure mixed together with large grains called "rosette" and surrounding small grains were observed on the films annealed over $600^{\circ}C$. Pyrochlore phase was completely changed to perovskite phase above $600^{\circ}C$ with the increase of annealing temperature. Dielectric constant (k) was larger with the increase of film thickness and annealing temperature. from the measurements of dielectric constant as a function of measuring temperature, it was also observed that Curie temperature was shifted to higher temperature with the increase of film thickness and annealing temperature. The pyroelectric coefficient(P) of 10 times coated film annealed at $700^{\circ}C$ was 65 $\mu$C/$\textrm{cm}^2$.K.$.K.

  • PDF

졸-겔법에 의한 이트리안 안정화 지프코니아박막의 결정화 (Crystallization of Yttria-Stabilized-Zirconia Film by Sol-Gel Process)

  • 서원찬;조차제;윤영섭;황운석
    • 한국표면공학회지
    • /
    • 제30권3호
    • /
    • pp.183-190
    • /
    • 1997
  • Fabrication and crystallization characteristics of yttria($T_2O_3$) stabilized zirconia(YSZ) thin film by sol-gel process were studied. YSZ sol was synthesized with zirconium n-propoxide($Zr(OC_3H_7)_4)$) and yttrium nitrate pentahydrate ($Y(NO_3)_3.5H_2O$). YSZ film was prepared by depositing the polymeric sol on porous $Al_2O_3$ substrate by spin-coating, and the film characteristics were investigated by FRIR, TG-DTA, XRD, DSC, optical microscopy and SEM. The film topology was uniform and cracks were not found. It was found that the annealing temperature and the concentration of stabilizer affect the crystallization of YSZ film. The YSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$, and it was not converted to cubic structure until $1100^{\circ}C$. It seemed that the grains were formed over $700^{\circ}C$and the average grain size was obtained about 0.2$\mu\textrm{m}$.

  • PDF

Continuous Nanocomposite Coatings on a Phosphor for the Enhancement of the Long-term Stability

  • Kim, Jong-Woung;Song, Jung-Oh;Kim, Chang-Keun
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.233-233
    • /
    • 2006
  • [ $Y_{2}O_{2}S:Eu$ ], a red phosphor, coated with silica nanoparticles or nanocomposites composed of silica nanoparticles and polymeric materials such as PMMA and PVP was prepared via sol-gel process. Samples were prepared from four different methods coded P1, P2, P3, and P4. P1 includes a conventional sol-gel process and a dip-coating method while P2 has the same procedure with P1 except that nanocomposites containing both silica nanoparticles and polymer prepared by sol-gel process were used as coating materials. In P3 method, phosphors were dispersed in a solution containing silica precursor, i.e., TEOS and then polymerization was performed to coat onto the phosphors surface while P4 followed the same procedure with P3 except that a solution containing both TEOS and organic monomer were used in preparing coating materials. Among various coating methods examined in this study, uniform coating of phosphor could be achieved by using method P4, i.e., phosphor surface coating in a solution containing hydrophobic monomer and TEOS. Furthermore, $Y_{2}O_{2}S:Eu$ red phosphor coated with nanocomposite composed of PMMA matrix and silica nanoparticles exhibited enhanced PL intensity and long-term stability.

  • PDF

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium

  • Suleiman, Rami K.
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.168-174
    • /
    • 2019
  • The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.

다공성 금속 지지체에 제조된 실리카 분리막의 기체 투과 특성 (Preparation and Gas Permeation Properties of Silica Membranes on Porous Stainless Steel-Tube Supports)

  • 이혜련;서봉국
    • 멤브레인
    • /
    • 제24권3호
    • /
    • pp.177-184
    • /
    • 2014
  • 본 연구에서 고투과도를 갖는 실리카 분리막은 콜로이달 실리카 졸과 고분자형 실리카 졸 두 가지를 DRFF법과 SRFF법으로 다공성 금속 지지체 위에 코팅하여 제조되었다. 실리카 졸은 졸-겔법으로 테트라에톡시실란(TEOS)에 의하여 제조되었고, 각각의 졸은 동적광산란법(DLS), 전계방사 주사전자현미경(FE-SEM), 질소 흡착법 등을 이용하여 그 특성을 평가하였다. 다공성 금속 지지체위에 콜로이달 실리카 졸로 중간층을 형성하여 치밀한 구조의 실리카 층을 형성한 후 그 위에 분리층으로 고분자형 실리카 졸을 코팅하여 핀홀을 줄이는 방법으로 기체분리용 분리막을 제조하였다. FE-SEM으로 분리막의 코팅 층을 분석한 결과 분리층은 중간층보다 침밀한 구조를 가지고 있음을 확인하였고 기체투과 결과 수소 투과도 $(6.63-9.21){\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ 분포를 보였다.

졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도 (Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability)

  • 손희정;이혜종;임탁형;송락현;백동현;신동열;현상훈
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

고분자 제습로터의 저온재생 성능시험 (Performance Test of Low Temperature Regeneration Polymeric Desiccant Rotor)

  • 이진교;이대영;오명도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.629-632
    • /
    • 2009
  • The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of $32^{\circ}C$, the regeneration air inlet temperature of $60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of $18.5^{\circ}C$, when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of $60^{\circ}C$. It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases.

  • PDF