• Title/Summary/Keyword: Polymer-Cement Ratio

Search Result 197, Processing Time 0.025 seconds

A Study on the Adhesion in Flexure Property of Polymer-Cement Composites for Crack Repair (균열보수용 폴리머 시멘트 복합체의 휨접착 성능에 관한 연구)

  • Kwon, Woo-Chan;Park, Dong-Yeop;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.159-160
    • /
    • 2022
  • The purpose of this study is to evaluate the adhesion in flexure depending on the cement type, polymer type, polymer-cement ratio, and silica fume ratio of the polymer-cement composites(PCCs) for crack repair in RC structures to induce optimal mix proportions. The adhesion in flexure of PCCs for crack repair of RC structure has a significant effect on the polymer type and polymer-cement ratio, and the adhesion in flexure is generally improved with mixing of silica fume as a mixture. The adhesion in flexure according to the type of polymer is slightly higher in the order of SAE, EVA, and SBR, and it is relatively high at the polymer-cement ratio of 60% or 80%. In addition, the adhesion in flexure of PCCs with silica fume ratio of 10% or 20% to the cement weight is higher than that without silica fume. In order to improve the adhesion in flexure of PCCs for repairing cracks in RC structures, the optimal mix design is to properly adjust the cement type, polymer type, polymer-cement ratio, and silica fume ratio.

  • PDF

The Influence of Polymers on the Hydration of Modified Cement System (속경형시멘트의 수화거동에서 폴리머의 영향)

  • Park, Phil-Hwan;Lee, Kyoung Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.496-501
    • /
    • 2007
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition. To overcome this problem, polymer-modified cement based on rapid setting cement mortars were prepared by varying polymer/cement mass ratio (P/C) with a constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different curing temperature. The results showed that the polymer mortar which is modified with rapid setting cement have superior physical strength properties on independent curing temperature. In addition the PIC ratio, the compressive strength, flexural strength, tensile strength and adhesion strength of mortar is enhances and polymer-modified cement based on rapid setting cement is more beneficial to the improvement of the mortar properties in jobsite.

The Influence of Polymer on the Early Hydration of OPC (시멘트의 초기수화에서 폴리머의 영향)

  • Park, Phil-Hwan;Song, Myong-Sin;Lee, Kyoung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.744-749
    • /
    • 2008
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition and polymer cement ratio. To overcome this problem, polymer-modified cement were prepared by varying polymer/cement mass ratio (P/C) with $0{\sim}20%$ and constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different polymer cement ratio. The results showed that the polymer cement paste have increased the viscosity in addition the amount of polymer dosage and the polymers is completed resulting in a reduced degree of hydration caused by different ion elution amount. Also we know that the reactants is calcium acetate as a results of chemical reaction between acetate group in EVA which is hydrolysis in water and $Ca^{2+}$ ion during hydration of cement.

A Study on the Water Permeability and Drying Shrinkage of Polymer Cement Composites (폴리머 시멘트 복합체의 투수성 및 건조수축에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.71-77
    • /
    • 2009
  • In a range of forms, such as latex, water-soluble polymer, liquid resin, and monomer, polymer dispersions have been widely used in the construction industry as cement modifiers because of their excellent properties, such as acid-resistance, water-proofness, and good ductility in mortar and concrete. Polymer cement slurry (polymer-modified slurry) is made of cement and polymer dispersions, with a high polymer-cement ratio of 50% or more. The purpose of this study is to evaluate the water permeability and drying shrinkage of polymer cement mortar (polymer-modified mortar) and cement concrete coated by polymer cement slurry. The polymer cement mortar and cement concrete are prepared with various polymer types, polymer-cement ratios and curing methods, and are tested for water permeability, drying shrinkage and strength. The test results showed thatthe weight of permeable water of polymer cement mortar decreases with an increase in the polymer-cement ratio, reaching a minimum at the polymer-cement ratio of 20%. In particular, the weight of permeable water of St/BA-modified mortar with a polymer-cement ratio of 20% coated with St/BA-modified slurry is about 1/55 that of unmodified mortar. The EVA- and St/BA-modified slurries coated on cement concrete have about 4 or 5 times higher drying shrinkage compared to cement concrete. The strength of polymer cement mortars tends to increase with a higher polymer-cement ratio, and is considerably higher than that of unmodified mortar. It is thus concluded that polymer cement mortars coated by polymer cement slurry are effective for industrial application, and have superior properties such as waterproofness and strengths, compared with conventional cement mortar.

Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete (폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

A Study on the Viscosity and Flowability of Polymer-Cement Composites for Repairing Cracks of RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 점도와 유동성에 관한 연구)

  • Hong, Dae-Won;Kim, Sang-Hyuk;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.166-167
    • /
    • 2021
  • The purpose of this study is to evaluate the viscosity and flowability of polymer-cement composites for repairing cracks of RC structures. The viscosity and flowability of the polymer cement composites differed greatly depending on the type of polymer and the polymer cement ratio, and the polymer cement composites could be produced that could repair fine cracks in the RC structure without material separation by adjusting the proper water-cement ratio. In particular, the mixing of high viscosity EVA-modified polymer composites could be adjusted.

  • PDF

The Strength and Durability of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 강도와 내구성)

  • Hwang, Eui-Hwan;Hwang, Taek-Bung;Ohama, Yoshihiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.786-794
    • /
    • 1994
  • The strength and durability of polymer-cement mortars were investigated. The specimens of polymer-cement mortar were prepared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various polymer-cement ratios(5, 10, 15, 20wt%). For the evaluation of durability of polymer-cement mortars, freezing-thawing, acid resistance and heat resistance tests were conducted. With an increase of polymer-cement ratio, the frost resistance of polymer-cement mortars was greatly improved, but acid and heat resistance were deteriorated. The compressive and flexural strengths of SBR polymer-cement mortars were improved with an increase of polymer-cement ratio, whereas those of EVA and PAE polymer-cement mortars reached maximum value at polymer-cement ratio of 10wt%.

  • PDF

Fundamental Properties of Lightweight Polymer-Cement Mortars Using Polystyrene Beads (Polystyrene Beads를 사용한 경량 폴리머 시멘트 모르타르의 기초적 성질)

  • 이기원;신영수;이윤수;황진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.327-332
    • /
    • 2000
  • The objective of this study was to improve the defects of lightweight cement concrete by treating with redispersible polymer powders. The statistical relationships of water-cement ratios, contents of lightweight aggregates and polymer powers and be used for predicting the concrete strength. It was found that the varieties and techniques adopted in this experiment were capable of identifying the influence of various tested for air contents, flow test, water absorption, specific gravity, flexural and compressive strength. This study showed that fundamental properties were very affected by cement- lightweight aggregate ratio, polymer-cement ratio and water-cement ratio.

  • PDF

Drying Shrinkage of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머 시멘트 모르타르의 건조수축)

  • 이윤수;주명기;정인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.93-98
    • /
    • 2002
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time and drying shrinkage of polymer-modified mortars using redispersible polymer powder are examined. As a result the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer agent content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르터의 내구성)

  • 이윤수;주명기;정인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.153-158
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the durability characteristics of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. And, water absorption and mass change of chemicals resistance of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio.

  • PDF