• Title/Summary/Keyword: Polymer viscosity

Search Result 658, Processing Time 0.029 seconds

Property and Polymerization of Hi-solid PSA's using Seeded Polymerization (Seed 중합을 이용한 고고형분 수용성 점착제의 합성과 물성)

  • Jung, Young Sik;Min, Seong-Kee;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.174-181
    • /
    • 2009
  • The viscosity for hi-solid pressure sensitive adhesive to improve water soluble low viscosity pressure sensitive adhesive polymerized using seeded polymerization. While seed binder polymerizing it produces an optimum polymerization condition, and acrylic acid and seed binder concentration changed were measurement of viscosity variation and adhesive power at the substrate (SUS420J) as flowing results. In adhesive polymerization, seed binder concentration 7 wt%/monomer was recovered 60% of solid content, 2,100 cps of low viscosity and clear adhesive film. When acrylic acid content was 4 wt%/monomer, it was turned excellent adhesive power and holding power.

  • PDF

Improvement of Dissolution Rate for Zaltoprofen Tablets Using CMC and HPMC (CMC와 HPMC를 이용한 잘토프로펜 정제의 용출률 개선)

  • Park, Hyun-Jin;Hong, Hee-Kyung;Song, Yi-Seul;Hong, Min-Sung;Seo, Han-Sol;Hong, Dong-Hyun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.300-305
    • /
    • 2010
  • Zaltoprofen is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) and has been widely used in the treatment of a number of arthritic conditions or lumbago. Zaltoprofen has low water solubility and low bioavailability, therefore great efforts have been devoted to enhance the extent of drug adsorption. In this study, zaltoprofen was formulated into a tablet to enhance the bioavailability and to achieve sustained-release using additives such as lactose monohydrate, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC). Fourier transform-infrared (FTIR) and differential scanning calorimeter (DSC) were employed to study the structure and crystallization of zaltoprofen in the tablet with various contents of additives. It was found that additives had interactions with zaltoprofen and inhibited the crystallization of zaltoprofen. Tablets containing low viscosity HPMC showed a higher release than those containing high viscosity HPMC. Also, as the amount of CMC increased zaltoprofen release increased.

Characterization of silica nano-particle filled poly (ethylene 2,6-naphthalate) (실리카 나노입자 충진 폴리에틸렌 나프탈레이트의 특성)

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Im, Seung-Soon;Lee, Seung-Goo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • Poly (ethylene 2, 6-naphthalate) (PEN) has been used for a high performance engineering plastics such as fiber, film, and packaging, because of excellent physical properties and outstanding gas barrier characteristics [1-2]. However, the application of PEN is limited because PEN exhibits a relatively high melt viscosity. Recently, many researches for organic/inorganic composites by applying nano-particles to the polymer matrix have been carried out [3], and the nano-particles exhibited greatly improved mechanical and rheological properties [4]. (omitted)

  • PDF

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

Synthesis and spinning of A Novel Poly (acrylonitrile-co-silk fibroin peptide)

  • Zhongmin Chen;Masahiro Suzuki;Kim, Mutsumi ura;Kenji Hanabusa;Hirofusa Shirai
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.88-89
    • /
    • 2003
  • A series of novel spinning acrylic polymer containing silk protein were synthesized by copolymerization of acrylonitrile (AN) and silk fibroin peptide (SFP) modified by acryloyl chloride (AC) with vinyl groups. The viscosity values of these copolymers showed that the copolymers have good spinnability, which are synthesized under the condition of putting a micro amount of metal ions into synthesizing solvent. The fiber based on the poly (AN-co-SFP) was prepared and characterized by SEM, FTIR measurement of its shell and core flakes, and moisture absorption. The fiber appeared a smooth surface and could be assumed to have excellent adhesive between SFP and PAN. Furthermore, these fibers showed a shell-core structure and excellent moisture absorption.

  • PDF

Blends of semi-rigid substituted poly(p-phenylene) with BPA-polycarbonate

  • Dijkstra Dirk J.;Karbach Alexander;Malkovich Nick
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.364-364
    • /
    • 2006
  • The rheological properties of Parmax 1200, a new semi-flexible substituted polyphenylene, were investigated. The reported high stiffness of the material was confirmed. The rheological measurements proved that, despite the very high stiffness of the molecules, Parmax showed shear thinning and that, although the viscosity is very high and the melt is highly elastic, the polymer can be extruded in the melt. A worm-like morphology was detected in AFM and TEM. This morphology could explain the reported mechanical and rheological behaviour. The compatibility with flexible chain polymers (e.g. polycarbonate) could also be explained by the worm-like morphology.

  • PDF

Study on Electrical and Thermal Properties of Poly(3,4-ethylenedioxythiophene)-coated Polycarbonate Fi1ms (Poly(3,4-ethylenedioxythiophene)으로 코팅된 Polycarbonate 필름의 전기적 특성과 열적 특성에 관한 연구)

  • Sangsoo Jeon;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.169-170
    • /
    • 2003
  • There was little development in transparent conductive polymer films and their limited studies have been mainly focused on polymer films coated by water-soluble PEDOT doped with the polymeric counteranion poly(4-styrenesulfonate) (PEDOT-PSS)[1-3]. However PEDOT-PSS as coating material has some difficulties because of high viscosity and low solubility in organic solvent except for in water. In this study, in order to extend practical applications of PEDOT and to prepare conductive PC films, we tried to prepare PEDOT-coated PC films and investigated their conductivity and thermal stability. (omitted)

  • PDF

A Study on Urethane-Based Gel Polymer Electrolyte for Lithium ion Battery (리튬이온전지용 Urethane기 겔폴리머전해질에 관한 연구)

  • 김현수;김성일;최관영;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1033-1038
    • /
    • 2002
  • In this study, urethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte (GPE), and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were Prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor consisting of urethane acrylate (UA), hexanediol dimethacrylate (HDDA) and benzoyl peroxide (BPO) had a low viscosity relatively ionic conductivity of the gel polymer electrolyte with UA at room temperature and -20$\^{C}$ was ca. 4.5 $\times$ 10$\^$-3/S$.$cm$\^$-1/ and 1.7 x 10$\^$-3/ S$.$cm$\^$-1/, respectively GPR was stable electrochemically up to potential of 4.i V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/graphite cells showed good a high-rate and a low-temperature performance.

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning

  • Jung, Yoon-Ho;Kim, Hak-Yong;Lee, Douk-Rae;Park, Sun-Young;Khil, Myung-Seob
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.385-390
    • /
    • 2005
  • The electrospinning process is a fascinating method to fabricate small nanosized fibers of diameter several hundred nanometers. Surfactant-polymer solutions were prepared by adding poly(vinyl alcohol) (PVOH) to distilled water with cationic, anionic, amphoteric, and non-ionic surfactants. Average diameter of the electrospun PVOH fibers prepared from PVOH solution was over 300 nm, and was decreased to 150 nm for the mixture of PVOH/amphoteric surfactant. To explain the formation of ultra fine fiber, the characteristic properties in a mixture of PVOH/surfactant such as surface tension, viscosity, and conductivity were determined. In this paper, the effect of interactions between polymers with different classes of surfactants on the morphological and mechanical properties of electrospun PVOH nonwoven mats was broadly investigated.

Coarsening Effects on the Formation of Microporous Membranes

  • Song, Seung-Won
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.1-4
    • /
    • 1995
  • The microstructure of polymer membranes produced via thermally induced phase separation (TIPS) of polymer solutions is a strong function of both the early-stage (by spinodal decomposition or nucleation & growth) and the late-stage phase separation (referred to in general as coarsening). In the case of early stage effects, the membrane morphology resulting from a nucleation & growth mechanism is either a poorly interconnecsed, stringy, beady structure which is mechanically fragile or a well interconnected structure with highly nonuniform pore sizes. In contrast, spinodal decomposition results in a well interconnected, mechanically strong membrane with highly uniform pore sizes. Here I describe recent quantitative studies of the coarsening effects on the microstructure of membranes produced via TIPS process. The dependence of microstructure on coarsening time, quench depth, solution viscosity, and polymer molecular weight was investigated in order to distinguish among three possible coarsening mechanisms, Ostwald ripening, coalescence, and hydrodynamic flow, which may be responsible for structural evolution after the early-stage phase Separation (spinodal decomposition or nucleation & growth).

  • PDF