• Title/Summary/Keyword: Polymer viscosity

Search Result 658, Processing Time 0.021 seconds

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Copolymerization of Organo Silane with Butoxyacrylamide Monomer and Its Physical Properties

  • Han, Jong Hee;Ko, Byeng In;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Many scientific approaches have been developed for the preparation of alternative crosslinker system of amino resins and isocyanate prepolymers. Herein, copolymerization of trimethoxy silane with N-butoxymethyl acrylamide was performed, and the product was reacted with hydroxyl groups in the alkyl main chain without the need for an additional crosslinker. For the crosslinker synthesized herein, the molecular weight, glass transition temperature, and viscosity increased with increasing content of N-butoxymethyl acrylamide.

Ceramic Foams by the Self-Blowing of Polymer (고분자의 자체발포를 이용한 세라믹 다공질체)

  • 백종원;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.555-559
    • /
    • 2004
  • Ceramic foams were prepared by a self-blowing process of a polysiloxane with A1$_2$O$_3$ as a filler. The release of water and ethanol vapor during the condensation reaction of the polymer triggered the pores in the polymer melt. The size. interconnectivity and shape of the pores in the ceramic foams were strongly dependent on the viscosity of the polymer melt, which could be varied by the content and size oi the filler. When the content of the filler inceased and the size of the filler decreased. the size of the pores were decreased and the thickness between the pores were increased. In the addition, the viscosity of polymer melt increased by the pretreatment at 130$^{\circ}C$ for Ire intermolecular cross linking thereby stabilizing the foam structure. The density and compressive strength of the ceramic foams were affected by the heating rate during the blowing process.

Polymer Inkjet Printing: Construction of Three-Dimensional Structures at Micro-Scale by Repeated Lamination

  • Yun, Yeon-Hee;Kim, Jae-Dong;Lee, Byung-Kook;Cho, Yong-Woo;Lee, Hee-Young
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • Solution-based, direct-write patterning by an automated, computer-controlled, inkjet technique is of particular interest in a wide variety of industrial fields. We report the construction of three-dimensional (3D), micro-patterned structures by polymer inkjet printing. A piezoelectric, drop-on-demand (DOD) inkjet printing system and a common polymer, PVA (poly(vinyl alcohol)), were explored for 3D construction. After a systematic preliminary study with different solvent systems, a mixture of water and DMSO was chosen as an appropriate solvent for PVA inks. The use of water as a single solvent resulted in frequent PVA clogging when the nozzles were undisturbed. Among the tested polymer ink compositions, the PVA inks in a water/DMSO mixture (4/1 v/v) with concentrations of 3 to 5 g/dL proved to be appropriate for piezoelectric DOD inkjet printing because they were well within the proper viscosity and surface tension range. When a dot was printed, the so-called 'coffee-ring effect' was significant, but its appearance was not prominent in line printing. The optimal polymer inkjet printing process was repeated slice after slice up to 200 times, which produced a well-defined, 3 D micro-patterned surface. The overall results implied that piezoelectric DOD polymer inkjet printing could be a powerful, solid-freeform, fabrication technology to create a controlled 3D architecture.

Properties of Epoxy Modified PVC-sol Sealants (에폭시가 함유된 PVC졸 실란트의 물성)

  • Lee, Seung-Jin;Kim, Hyun-Kyo;Park, Hwan-Man;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.199-211
    • /
    • 1999
  • In this work, the effects of the addition of epoxy on the properties of PVC-sol sealants were investigated. PVC-sol was plasticized with dioctyl phthalates(DOP). Two kinds of epoxy resins having different epoxy equivalent weight (E.E.W.) were used. It was found that the properties of the PVC-sol sealants were significantly affected by the contents and types of the added epoxy resins. The viscosity behaviors of the epoxy-modified sealants, in the case of epoxy A addition, the viscosity was decreased with increasing the epoxy contents, but In the case of $CaCO_3$ addition, the viscosity was increased with increasing the $CaCO_3$ contents. The viscosity of epoxy modified sealants aged at $45^{\circ}C$ waterbath was decreased with increasing epoxy contents, since the epoxy acted on the sealants as a stabilizer. The thermal stability of the PVC-sol sealants was slightly improved by adding epoxy. The tensile strength and elongation of sealants modified with epoxy A(two functionalities of epoxy) were increased with increasing the epoxy contents up to a certain epoxy contents but was decreased with further increasing the epoxy contents. In the case of $CaCO_3$ addition, the tensile strength of sealants were decreased with increasing the $CaCO_3$ contents. In view of the electrical properties, such as tan ${\delta}$($0.1{\pm}0.04$) and ${\epsilon}_r$($0.5{\pm}0.04$), it was found that the epoxy modified sealants were as good as insulators.

  • PDF

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction

  • Housiadas Kostas D.;Beris Antony N.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • In this work we show the results of our most recent Direct Numerical Simulations (DNS) of turbulent viscoelastic channel flow using spectral spatial approximations and a stabilizing artificial diffusion in the viscoelastic constitutive model. The Finite-Elasticity Non-Linear Elastic Dumbbell model with the Peterlin approximation (FENE-P) is used to represent the effect of polymer molecules in solution, The corresponding rheological parameters are chosen so that to get closer to the conditions corresponding to maximum drag reduction: A high extensibility parameter (60) and a moderate solvent viscosity ratio (0.8) are used with two different friction Weissenberg numbers (50 and 100). We then first find that the corresponding achieved drag reduction, in the range of friction Reynolds numbers used in this work (180-590), is insensitive to the Reynolds number (in accordance to previous work). The obtained drag reduction is at the level of $49\%\;and\;63\%$, for the friction Weissenberg numbers 50 and 100, respectively. The largest value is substantially higher than any of our previous simulations, performed at more moderate levels of viscoelasticity (i.e. higher viscosity ratio and smaller extensibility parameter values). Therefore, the maximum extensional viscosity exhibited by the modeled system and the friction Weissenberg number can still be considered as the dominant factors determining the levels of drag reduction. These can reach high values, even for of dilute polymer solution (the system modeled by the FENE-P model), provided the flow viscoelasticity is high, corresponding to a high polymer molecular weight (which translates to a high extensibility parameter) and a high friction Weissenberg number. Based on that and the changes observed in the turbulent structure and in the most prevalent statistics, as presented in this work, we can still rationalize for an increasing extensional resistance-based drag reduction mechanism as the most prevalent mechanism for drag reduction, the same one evidenced in our previous work: As the polymer elasticity increases, so does the resistance offered to extensional deformation. That, in turn, changes the structure of the most energy-containing turbulent eddies (they become wider, more well correlated, and weaker in intensity) so that they become less efficient in transferring momentum, thus leading to drag reduction. Such a continuum, rheology-based, mechanism has first been proposed in the early 70s independently by Metzner and Lamley and is to be contrasted against any molecularly based explanations.

Effect of associating polymer on the dispersion stability and rheology of suspensions

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Associating polymers are hydrophilic long-chain molecules to which a small amount of hydrophobic groups (hydrophobes) is incorporated. In aqueous solution, the association interactions result in the formation of three-dimensional network through flowerlike micelles at high concentrations. In colloidal suspensions, the associating polymers act as flocculated by bridging mechanism. The rheological properties of suspensions flocculated by associating polymers end-capped with hydrophobes are studied in relation to the bridging conformation. At low polymer concentrations, the polymer chains effectively form bridges between particles by multichain association. The suspensions are highly flocculated and show typical viscoelastic responses. When the polymer concentration is increased above the absorbance at saturation, the excess polymer chains remaining in the solution phase build up three-dimensional network by associating interactions. Since the presence of particles does not significantly influence the network structures in the medium, the relative viscosity, which gives a measure of the degree of flocculation is decreased with increasing polymer concentration. The bridging conformation and flocculation level vary strongly depending on the polymer concentrations.

Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.51-65
    • /
    • 2001
  • Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

  • PDF

Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups

  • Kar, Pradip
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Processable conducting polyaniline derivative with free amine functional groups was successfully synthesized from the monomer o-phenylenediamine in aqueous hydrochloric acid medium using ammonium persulfate as an oxidative initiator. The synthesized poly(o-phenylenediamine) (PoPD) in critical condition was found to be completely soluble in common organic solvents like dimethyl sulfoxide, N,N-dimethyl formamide etc. From the intrinsic viscosity measurement, the optimum condition for the polymerization was established. The polymer was characterized by ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy ($^1HNMR$) and thermogravimetric (TGA) analyses. The weight average molecular weights of the synthesized polymers were determined by the dynamic light scattering (DLS) method. From the spectroscopic analysis the structure was found to resemble that of polyaniline derivative with free amine functional groups attached to ortho/meta position in the phenyl ring. However, very little ladder unit was also present with in the polymer chain. The moderate thermal stability of the synthesized polymer could be found from the TGA analysis. The average DC conductivity of $2.8{\times}10^{-4}S/cm$ was observed for the synthesized polymer pellet after doping with hydrochloric acid.