• 제목/요약/키워드: Polymer semiconductor

검색결과 227건 처리시간 0.026초

염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석 (Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells)

  • 모하메드 샤히르 아크탈;박정근;김의연;이현철;양오봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

컨택 산화막 에칭에서의 바닥 모양 찌그러짐 변형 개선 (The Improvement of Profile Tilt in High Aspect Ratio Contact)

  • 황원태;최성길;권상동;임장빈;정상섭;박영욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.666-670
    • /
    • 2004
  • VLSI 소자에서 design rule(D/R)이 작아져 각 단위 Pattern의 size가 작아짐에 따라 aspect ratio가 커지게 되었다. 산화막 contact etch를 하는데 있어 산화막 측벽을 보호하는데, 이러한 보호막은 주로 fluoro-carbon 계열의 polymer precursor들이 사용된다. Aspect ratio(A/R)가 5 이하일 때에는 측벽의 보호막에 의한 바닥 변형이 문제가 되지 않으나, 10 이상의 A/R를 가진 contact에서는 크기가 줄고, 모양이 불균형하게 변하는 바닥 변형을 쉴게 관찰할 수 있다. 이러한 바닥 변형이 커지면 contact 저항이 높아지는 것은 물론이고, 심하게는 하부 pattern과 overlap 불량을 유발할 수 있다. 본 논문에서는 바닥변형을 일으키는 원인을 분석하고 fluoro-carbon 계열의 polymer precursor의 종류$(C_4_F6\;vs.\;C_3F_8)$에 따른 polymer증착 상태 확인 및 pattern비대칭에 따른 바닥 변형의 고찰과 plasma etching 시 H/W 변형을 통해 바닥 변형이 거의 없는 조건을 찾아낼 수 있었다.

  • PDF

Synthesis and Characterization of Tetrathiafulvalene-Based Smectic Liquid Crystals

  • Wang, Lei;Kim, Young-Gook;Jeong, Kwang-Un;Lee, Myong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1389-1392
    • /
    • 2009
  • A series of new symmetric TTF derivatives were designed and synthesized. This facile synthetic method provides an opportunity to prepare TTF-based LC candidates. This series of compounds exhibited smectic A phase based on coplanar TTF core. One of the LC compounds was used as a semiconductor layer to fabricate OTFT.

  • PDF

Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester Composites

  • Shaktawat, Vinodini;Pothan, Laly A.;Saxena, N.S.;Sharma, Kananbala;Sharma, T.P.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.89-99
    • /
    • 2008
  • Using a Dynamic Mechanical Analyzer (DMA), mechanical properties like modulus and phase transition temperature of polyester composites of banana fibers (treated and untreated) are measured simultaneously. The shifting of phase transition temperature is observed in some treatments. The performance of the composite depends to a large extent on the adhesion between polymer matrix and the reinforcement. This is often achieved by surface modification of the matrix or the filler. Banana fiber was modified chemically to achieve improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkalies were used to modify the fiber surface. Chemical modification was found to have a profound effect on the fiber/matrix interaction, which is evident from the values of phase transition temperatures. Of the various chemical treatments, simple alkali treatment with 1% NaOH was found to be the most effective.

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • 제3권2호
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터 (Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories)

  • 조보은;강문성
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.759-763
    • /
    • 2016
  • We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.