• 제목/요약/키워드: Polymer networks

검색결과 142건 처리시간 0.038초

보강성 충전제를 첨가한 절연용 실리콘 고무의 전기 특성 평가 (Estimation of Electric Properties of Insulating Silicone Rubbers Added Reinforcing Fillers)

  • 이성일
    • Elastomers and Composites
    • /
    • 제32권5호
    • /
    • pp.309-317
    • /
    • 1997
  • Estimation of the dielectric properties of insulating silicone rubbers added reinforcing fillers $(SiO_2,\;0{\sim}140phr)$ are very important to investigate the polymer structure. The characteristies of the dielectric absorption in insulating silicone rubbers were studied in the frequency range from 30Hz to 1MHz at the temperature range from $0{\sim}170^{\circ}C$. In the case of non-filled specimen, the dielectric loss is due to the syloxane which is the main chain of silicone rubber at the low temperature below $50^{\circ}C$ and the frequency at 330Hz, and is due to methyl and vinyl radical over the frequency of 1MHz. It is confirmed that the methyl radical or the vinyl radical becomes thermal oxidation at the high temperature over $100^{\circ}C$ and then the dielectric disperssing owing to the carboxyl radical Is appeared. In the case of filled specimen, the dielectric constant is in creased with the additives of reinforcing fillers due to the effect of interfacial polarization explained by MWS(Maxwell-Wagner-Sillars)'s law. The dielectric loss is decreased by the disturbance of reinforcing fillers that is permeated between networks.

  • PDF

2 -관능성 에폭시 수지 블렌드의 굴곡 특성과 열 안전성 (Flexural Properties and Thermal Stability of Bifunctional/Tetrafunctional Epoxy Blends)

  • 유희열;이재락;이종문
    • 한국재료학회지
    • /
    • 제4권1호
    • /
    • pp.75-80
    • /
    • 1994
  • 2-관능성 DGEBA-4-관능성 TGDDM 블렌드를 DDM으로 경화시킨 경호물의 굴곡 특성과 열 안정성을 혼합비에 대하여 조사하였다. 굴곡 탄성율과 유리 전이 온도는 TGDDM이 증가 될수록 증대되었고, 20-40 중량%의 TGDDM조성에서 불연속적으로 변화하는데, 이것은 이 저성 부근에서 ductile/brittle의 구조적 상변화가 일어나고 있기 때문인 것으로 추정된다. TGDDM성분이 증가될수록 최대 열분해 온도는 고온쪽으로 shift되는 경향을 보이지만, 분해에 대한 활성화 에너지는 오히려 감소했다.

  • PDF

PTC/NTC Behaviors of Nanostructured Carbon Black-filled HDPE Polymer Composites

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.159-164
    • /
    • 2001
  • In this study, the effects of carbon black (CB) content and anodic oxidation treatment with $AgNO_3$ on positive temperature coefficient (PTC) behavior of CB/HDPE nanocomposites were investigated. Also, the addition of elastomer as a toughing agent was studied. The 20~50 wt% of CB, 0~5 wtt% of elastomer, and 1 wt% of $AgNO_3$-filled HDPE nanocomposites were prepared using the internal mixer in 60 rpm at $160{\circ}C$ and the compression-molded at $180{\circ}C$ for 10 min. As a result, the room temperature resistivity and PTC intensity of the composites were dependent, to a large extent, on the content of CB, addition of elastomer, and surface chemical properties that were controlled in the relative arrangements of the carbon black aggregates in a polymeric matrix. Moreover, the composites with relatively low room temperature resistivity and suitable PTC intensity could be achieved by treatment of $AgNO_3$. Consequently, it was noted that PTC effect was due to the deagglomeration or the breakage of the conductive networks caused by thermal expansion or crystalline melting of the polymeric matrix.

  • PDF

Electro-controllable omni-directional laser emissions from a helical polymeric network composite film

  • Jang, Won-Gun;Park, Byoung-Choo;Kim, Min-A;Kim, Sun-Woong;Kim, Yun-Ki;Choi, Eun-Ha;Seo, Yoon-Ho;Cho, Guang-Sup;Kang, Seung-Oun;Takezoe, Hideo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.883-886
    • /
    • 2008
  • In optical information technology, an electro-controllable Photonic Band Gap (PBG) in a photonic crystal (PC) material is potentially useful for the manipulation of light. Despite a great deal of research on PBGs, the reliable use of electro-active PBG material systems is restricted to only a few cases because of the complex and limiting nature of the structures involved. Here, we propose a PBG system that uses a liquid crystal (LC) polymer composite. The composite is made of nematic LCs (NLCs) embedded in polymeric helical networks of photo-polymerized cholesteric LCs (CLCs). The composite film shows a large field-induced reversible color shift over 150 nm of the reflection band, due to the reorientational undulation of the helical axis, similar to the Helfrich effect.

  • PDF

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

Hydrogel microrheology near the liquid-solid transition

  • Larsen, Travis;Schultz, Kelly;Furst, Eric M.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.165-173
    • /
    • 2008
  • Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

Development of a Porous Scaffold-Manufacturing Method by Blending Silk Fibroin and Agarose Polymer Solutions

  • Park, Seung-Won;Kweon, Hae-Yong;Goo, Tae-Won;Kim, Seong-Ryul;Jo, You-Young;Choi, Gwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제25권1호
    • /
    • pp.75-79
    • /
    • 2012
  • Low-melting-temperature agarose gel solution, as a novel porogen was combined with a silk fibroin solution to generate interconnected porous networks. The porosity of the resultant silk fibroin-agarose scaffolds was greater than that of the scaffolds generated with agarose and deionized water. The porosities of silk fibroin scaffolds containing agarose gel at 0.5%, 1.0%, 1.5%, 2.0% [w/v] were 110.9%, 111.7%, 120.9%, and 123.0%, respectively. Lastly, the internal space generated in scaffolds after dissolution of the agarose gel provides a good environment for cell growth and movement within the scaffold.

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Vertically-Aligned Nanowire Arrays for Cellular Interfaces

  • 김성민;이세영;강동희;윤명한
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2013
  • Vertically-aligned silicon nanostructure arrays (SNAs) have been drawing much attention due to their useful electrical properties, large surface area, and quantum confinement effect. SNAs are typically fabricated by chemical vapor deposition, reactive ion etching, or wet chemical etching. Recently, metal-assisted chemical etching process, which is relatively simple and cost-effective, in combination with nanosphere lithography was recently demonstrated for vertical SNA fabrication with controlled SNA diameters, lengths, and densities. However, this method exhibits limitations in terms of large-area preparation of unperiodic nanostructures and SNA geometry tuning independent of inter-structure separation. In this work, we introduced the layerby- layer deposition of polyelectrolytes for holding uniformly dispersed polystyrene beads as mask and demonstrated the fabrication of well-dispersed vertical SNAs with controlled geometric parameters on large substrates. Additionally, we present a new means of building in vitro neuronal networks using vertical nanowire arrays. Primary culture of rat hippocampal neurons were deposited on the bare and conducting polymer-coated SNAs and maintained for several weeks while their viability remains for several weeks. Combined with the recently-developed transfection method via nanowire internalization, the patterned vertical nanostructures will contribute to understanding how synaptic connectivity and site-specific perturbation will affect global neuronal network function in an extant in vitro neuronal circuit.

  • PDF

Relationship between Printability and Rheological Properties of UV-curable Flexographic Ink

  • Jeong, Kyoung-Mo;Koseki, Ken'ichi
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.2
    • /
    • pp.209-213
    • /
    • 2006
  • Relationship between printability and rheological properties of UV flexographic (flexo) inks were investigated. UV flexo suspensions of carbon black in liquid medium having various binding materials such as acylate pre-polymer, di/multi-functional monomer, and diluents, were used as sample inks. Inks were characterized on a rheometer in terms of steady and dynamic behaviors. To understand the rheological properties of UV flexo inks, we must determine the specific rheological properties of chemical and/or physical interactions of their components (pigments, functional monomers, and pre-polymers). In particular, we discussed the influence of multi-functional monomers and the relationship between the rheological properties and transient networks formed by carbon black. In this study, we investigated the interrelationships between rheological properties of UV flexo inks and chemical and/or physical interactions of their components. To investigate correlations between the printability and the rheological behaviors induced by interfacial interactions between ink compositions, we carried out rheological tests of UV ink suspensions. The results were compared with printing tests so as to find out the relationship between printability and rheological properties of ink.

  • PDF