• 제목/요약/키워드: Polymer nanoparticles

검색결과 453건 처리시간 0.028초

한외여과공정에서 양쪽성 고분자 나노파티클을 이용한 오염물 제거 (Removal of Pollutants using Amphiphilic Polymer Nanoparticles in Micellar-Enhanced Utrafiltration)

  • 심진기;노상일;이상봉;조계민;이영무
    • 멤브레인
    • /
    • 제16권1호
    • /
    • pp.59-67
    • /
    • 2006
  • 생분해성 양쪽성 고분자를 이용하여 수용액에 존재하는 소수성 오염물질(페놀, 4-니트로페놀, 벤젠, 톨루엔) 및 중금속($Cs^{+},\;Mg^{2+},\;Cu^{2+},\;Ni^{2+},\;Cr^{3}$)을 제거하였다. 친수성을 띤 단량체로써 분자량이 서로 다른(1,100 그리고 5,000) methoxy poly(ethylene glycol) (MPEG)를 이용해 합성하였다. 투과실험 결과 상대적으로 분자량이 작은 MPEG를 이용해 합성한 경우보다 분자량이 큰 MPEG를 사용하였을 때 더 높은 제거율을 나타내었다. 한외여과공정을 이용해 오염물 없이 생분해성 나노파티클을 투과한 결과 나노파티클 용액의 농도가 100 mg/L 이상인 경우 나노 파티클 제거율은 98% 이상이었다. 소수성을 나타내는 오염원 제거시 소수성이 큰 오염원일수록 더 높은 제거율을 보였다. 또한 금속이온의 경우는 3가, 2가, 1가 이온의 순서로 제거율이 높았다.

나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구 (Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index)

  • 백경민;신현성;한진규;조맹효
    • Composites Research
    • /
    • 제30권5호
    • /
    • pp.323-330
    • /
    • 2017
  • 본 연구에서는 폴리프로필렌 내에 투입된 탄화규소 나노 입자들의 군집현상이 나노복합재의 역학적 거동에 미치는 영향을 고찰하기 위해 분자동역학 전산모사를 통해 얻은 정보를 연속체 역학 수준에 적용시키는 멀티스케일 해석을 수행하였다. 입자 간의 거리에 따른 계면 물성의 하락을 반영하는 모델을 이용하여, 다양한 군집 상황에 따른 고분자 나노복합재의 탄성거동 변화를 관찰하였다. 또한, 나노복합재의 기계적 거동에 영향을 미치는 주요 요인을 파악하여 군집밀도라는 새로운 지표를 정의하였다. 나노 입자의 군집밀도와 나노복합재의 탄성거동 간의 상관관계를 파악한 결과, 군집밀도의 값이 증가할수록 계면효과가 저하되어 최종적으로 나노복합재의 기계적 물성 상승이 억제되었다. 나노 입자의 랜덤분포를 고려한 해석을 통해, 동일한 군집밀도의 수치에 대해 나노복합재가 가질 수 있는 탄성계수의 범위를 파악할 수 있었다. 상관관계는 지수 함수형태로 표현될 수 있었으며, 이를 통해 나노 입자의 군집밀도를 이용하여 고분자 나노복합재의 기계적 거동을 효과적으로 예측 가능하다.

가스 차단을 위한 유.무기 하이브리드 소재기술 (Organic-Inorganic Hybrid Materials Technology for Gas Barrier)

  • 김기석;박수진
    • Elastomers and Composites
    • /
    • 제46권2호
    • /
    • pp.112-117
    • /
    • 2011
  • 고기능 포장재료를 포함한 고차단성 소재산업은 국민소득 증가 및 웰빙 문화와 함께 성장성이 높은 산업으로 성장할 것으로 예상된다. 따라서 최근 고차단성 소재로 기존의 소재와 비교하여 우수한 물성을 나타내는 고분자 나노복합재료에 대한 관심이 크게 증가하고 있다. 고분자 나노복합재료는 고분자 수지와 나노 크기의 충전제로 이루어진 소재를 의미하며, 이에 사용되는 무기 충전제는 층상 실리케이트, 탄소나노튜브, 금속 또는 무기물의 나노입자 등 다양한 물질들이 사용되고 있다. 현재 가장 활발히 적용되고 있는 입자는 다른 나노크기의 충전제와 달리 자연에 풍부하게 존재하며 경제적이고 나노 구조적인 특성을 잘 지닌 층상 실리케이트, 즉 점토(Clay)이다. Clay를 이용한 고분자 나노복합재료는 강도 향상, 난연성, 가스 차단성, 내마모성, 저수축화 등의 장점이 있어서 자동차 소재 및 포장재 등에 우선적으로 적용되고 있다. 따라서 본고에서는 가스차단 소재의 필요성과 더불어 관련 소재 및 기술에 대하여 중심으로 살펴보도록 하겠다.

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Preparation and Characterization of Water-Dispersible Silver Nanoparticles Stabilized by PEO-Conjugated Pro-Drugs

  • Kim, Tae-Hwan;Kim, Keun-Suk;Park, Geon-Hee;Choi, Jin-Hee;Lee, Sang-Mi;Kang, Ho-Jung;Lee, Jae-Yeol;Kim, Jung-Ahn
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.770-775
    • /
    • 2009
  • $\omega$-Anhydride-functionalized poly(ethylene oxide) (PEO) obtained from chain-end functionalization and anionic ring-opening polymerization of ethylene oxide using n-butyllithium with potassium t-butoxide in the presence of dimethylsulfoxide (DMSO) was found to be an efficient material for the preparation of water-soluble, polymeric pro-drugs. The reaction of $\omega$-anhydride-functionalized PEO with sulfonamide or with vancomycin provided an efficient method to produce corresponding, water-soluble, PEO-conjugated sulfonamide or PEO-conjugated, vancomycin pro-drugs. These were used successfully to prepare water-dispersible, silver nanoparticles. In this study, the particle sizes were in the range of $5{\sim}40$ nm. The resulting products were characterized by $^1H$ NMR spectroscopy, transmission electron microscopy, electron and X-ray diffraction, size exclusion chromatography, and UV/Visible spectroscopy.

금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황 (Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes)

  • 고승환
    • 한국입자에어로졸학회지
    • /
    • 제6권3호
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y.;Guerrero, Michael S.;Aquino, Michael;Kwon, Chu-Hee;Shon, Young-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.291-297
    • /
    • 2010
  • This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Ultrafine Copper Nanoparticles Exhibiting a Powerful Antifungal/Killing Activity Against Corticium Salmonicolor

  • Cao, Van Du;Nguyen, Phuong Phong;Khuong, Vo Quoc;Nguyen, Cuu Khoa;Nguyen, Xuan Chuong;Dang, Cap Ha;Tran, Ngoc Quyen
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2645-2648
    • /
    • 2014
  • In this paper ultrafine copper nanoparticles (CuNPs) were prepared from copper salt via chemical reduction method with sodium citrate dispersant and polyvinylalcol (PVA) capping polymer. The colloidal CuNPs were characterized by using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) techniques. Our obtained results indicated that the CuNPs were produced ranging from 2 to 4 nm in diameter. The colloidal solution at 7 ppm of CuNPs exhibited a powerful antifungal activity against Corticium salmonicolor (C. Salmonicolor). Fungal killing assays showed colloid solutions containing 10 ppm of CuNPs killed entirely the cultured fungus. A highly killing activity against the fungus was also performed when the CuNPs were sprayed on pink disease-infected rubber trees. These positive results may offer a great potential to produce CuNPs-based eco-fungicide for pink disease.

Carbon rich fly ash and their nanostructures

  • Salah, Numan;Habib, Sami S.;Khan, Zishan H.;Alshahrie, Ahmed;Memic, Adnan;Al-ghamdi, Attieh A.
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.23-31
    • /
    • 2016
  • Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.