• 제목/요약/키워드: Polymer micelle

검색결과 75건 처리시간 0.023초

Norfloxacin이 담지된 Poly(ε-caprolactone)/Poly(ethylene glycol) 이중블록공중합체 미셀의 제조 (Norfloxacin-Incorporated Polymeric Micelle Composed of Poly(ε-caprolactone)/Poly(ethylene glycol) Diblock Copolymer)

  • 정영일;장미경;나재운
    • 폴리머
    • /
    • 제33권2호
    • /
    • pp.137-143
    • /
    • 2009
  • 이 연구에서 norfloxacin(NFX)이 담지된 poly($\varepsilon$-caprolactone)/poly(ethylene glycol)(PCL/PEG, abbreviated as CE) 이중블록공중합체로 구성된 고분자 미셀을 제조하였다. 입자크기는 PCL블록길이에 따라 60$\sim$200 nm사이였다. 임계회합농도는 소수성 PCL 블록길이가 증가함에 따라 감소하는 경향을 보였다. $^1H$-NMR 연구에서 PCL 블록은 내핵, PEG는 외피를 형성한 미셀구조로 형성되었음을 확인하였다. 약물의 방출은 약 2일간 지속되었으며 PCL블록길이와 약물함량이 증가함에 따라 감소하는 경향을 보였다. 항미생물 성능 실험에서 고분자 미셀은 기존의 NFX와 비슷한 독성을 보였다.

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Cosmetic Efficacy of Red Pinus densiflora and Its Epidermis Penetration with Polymer Micelle and Cell Penetrating Peptide

  • An, Gyu Min;Park, Su In;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • 제7권3호
    • /
    • pp.10-24
    • /
    • 2019
  • This study aimed to investigate the effects and epidermis penetration system with polymer micelle of Red Pinus densiflora extract. In the antioxidant test, the total concentration of polyphenol compounds was determined to be $137.5163{\pm}7.70mg/g$ in ethanol extract, $133.956{\pm}1.57mg/g$ in hydrothermal extract. The DPPH radical scavenging effects were $95.29{\pm}0.15%$ in ethanol extract at 1,000 mg/L. Elastase inhibition rates were $100.00{\pm}2.85%$ in ethanol extract at 2,000 mg/L. The antimicrobial effect of the ethanol extraction was higher than that of hydrothermal extractions. In the epidermal permeability experiment, it was confirmed that the permeation of the polymer micelle containing the Red Pinus densiflora's ethanol extract and cell penetrating peptides was remarkable. Here, we confirmed that ethanol extract of Red Pinus densiflora displayed excellent the effects in antioxidant test and epidermis penetration system with polymer micelle. As a result, Red Pinus densiflora extract has potential to be used as a safe and natural cosmetic material in the future.

Methotrexate-Incorporated Polymeric Micelles Composed of Methoxy Poly(ethylene glycol)-Grafted Chitosan

  • Jeong, Young-Il;Seo, Dong-Hyuk;Kim, Don-Gon;Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon;Park, Yoon-Kyung
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.538-543
    • /
    • 2009
  • In this study, methotrexate (MTX)-encapsulated polymeric micelles using methoxy poly(ethylene glycol) (MPEG)-grafted chitosan (ChitoPEG) copolymer were prepared. The MIX-incorporated polymeric micelles of ChitoPEG copolymer has a particle size of around 50-100 nm. In 1H nuclear magnetic resonance (NMR) study, the specific peaks of MTX disappeared in heavy water ($D_2O$) and only the specific peak of MPEG was observed, while all of the peaks were confirmed in dimethyl sulfoxide (DMSO). These results indicated that MTX was complexed with chitosan and then formed an ion complex inner-core of the polymeric micelle in an aqueous environment. The drug contents of the polymeric micelle were around $4{\sim}12%$ and the loading efficiency of MTX in the polymeric micelles was higher than 60% (w/w) for all of the formulations. The cytotoxicity of MIX and MTX-incorporated polymeric micelle against CT26 tumor cells was not significantly changed.

Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀 (Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System)

  • 정관호;김영진
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.512-518
    • /
    • 2006
  • 양친성 블록공중합체는 생분해성 고분자인 poly((R)-3-hydroxybutyrie acid), PHB와 친수성 고분자인 poly(ethylene glycol), PEG를 이용하여 제조되었다. 미생물에 의해 생산된 분자량이 수십만인 PHB는 약물전달용 재료로 적합하지 않으므로 산 촉매 가수분해를 통해 분자량이 $3000{\sim}30000$을 가지도록 조절되었다. 공중합체를 수용액에 넣으면, 고분자들은 자기 조립에 의해 친수성인 PEG가 소수성인 PHB를 감싸는 형태의 고분자 미셀을 형성한다. 형성된 고분자 미셀은 생분해성과 생체적합성을 가지면서 생체 내에서 낮은 독성과 환자 친화적인 특성을 가지므로 약물 전달체로의 이용이 가능하다. 양친성 블록 공중합체는 PHB에 PEG를 도입한 것으로 에스테르교환(transesterification) 반응을 통해 유도되었다. PEG는 친수성 블록의 형성과 반응성을 향상시키기 위해 말단의 작용기를 개질한 후 사용되었다. 양친성 블록 공중합체 형성에 대한 열적 특성과 화학적 구조 분석은 DSC, FTIR, $^1H-NMR$을 사용하여 알아보았다. 임계 미셀 농도(critical micelle concentration, CMC)는 고분자 미셀이 형성되는 시점으로 형광 분광기를 사용하여 분석한 결과 $5{\times}10^{-5}g/L$ 부근에서 측정되었다. 수용액 상의 고분자 미셀은 냉동 건조 후, 분말형태의 나노입자를 얻었다. 고분자 미셀의 크기는 dynamic light scattering으로 측정한 결과 약 130 nm 정도로 나타났다. 또한 atomic force microscopy 측정을 통해 크기가 약 130 nm 정도인 구형 입자를 확인하였다. 나노입자가 형성된 고분자 미셀은 소수성 약물을 담지하여 수동적 표적지향형 약물 전달용 수송체로 이용이 가능할 것이다.

Hydrogen-Bonding Induced Alternating Thin Films of Dendrimer and Block Copolymer Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Im, Min-Ju;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.688-692
    • /
    • 2007
  • The hydrogen-bonding induced alternating multilayer thin films of dendrimers and block copolymer micelles were demonstrated. The block copolymer micelles derived from amphiphilic poly(2-ethyl-2-oxazoline)block-$poly({\varepsilon}-carprolactone)$ (PEtOz-PCL) in aqueous phase have a core-shell structure with a mean hydrodynamic diameter of 26 nm. The hydrogen bonding between the PEtOz outer shell of micelle and the carboxyl unit of poly(amidoamine) dendrimer of generation 4.5 (PAMAM-4.5G) at pH 3 was utilized as a driving force for the layerby-layer alternating deposition. The multilayer thin film was fabricated on the poly(methyl methacrylate) (PMMA) thin film spin-coated on silicon wafer or glass substrate by the alternate dipping of PEtOz-PCL micelles and PAMAM dendrimers in aqueous solution at pH 3. The formation of multilayer thin film was characterized by using ellipsometry, UV-vis spectroscopy, and atomic force microscopy. The PEtOz outer shell of PEtOz-PCL micelle provided the pH-responsive hydrogen bonding sites with peripheral carboxylic acids of PAM AM dendrimer. The multilayer thin film was reversibly removed after dipping in aqueous solution at $pH{\geq}5.6$ due to dissociation of the hydrogen bonding between PEtOz shell of PEtOz-PCL micelle and peripheral carboxyl units of PAMAM dendrimer.

pH-Sensitivity Control of PEG-Poly(${\beta}$-amino ester) Block Copolymer Micelle

  • Hwang, Su-Jong;Kim, Min-Sang;Han, Jong-Kwon;Lee, Doo-Sung;Kim, Bong-Sup;Choi, Eun-Kyung;Park, Heon-Joo;Kim, Jin-Seok
    • Macromolecular Research
    • /
    • 제15권5호
    • /
    • pp.437-442
    • /
    • 2007
  • Poly(ethylene glycol) methyl ether (PEG)-poly(${\beta}$-amino ester) (PAE) block copolymers were synthesized using a Michael-type step polymerization, and the construction of pH-sensitive polymeric micelles (PM) investigated. The ${\beta}$-amino ester block of the block copolymers functioned as a pH-sensitive moiety as well as a hydrophobic block in relation to the ionization of PAE, while PEG acted as a hydrophilic block, regardless of ionization. The synthesized polymers were characterized using $^1H-NMR$, with their molecular weights measured using gel permeation chromatography. The $pK_b$ values of the pH-sensitive polymers were measured using a titration method. The pH-sensitivity and critical micelle concentration (CMC) of the block copolymers in PBS solution were estimated using fluorescence spectroscopy. The pH dependent micellization behaviors with various bisacrylate esters varied within a narrow pH range. The critical micelle concentration at pH 7.4 decreased from 0.032 to 0.004 mg/mL on increasing the number of methyl group in the bisacrylate from 4 to 10. Also, the particle size of the block copolymer micelles was determined using dynamic light scattering (DLS). The DLS results revealed the micelles had an average size below 100 nm. These pH-sensitive polymeric micelles may be good carriers for the delivery of an anticancer drug.

The Ordered Structures of Poly(styrene-b-4vinylpridine)s

  • Pak, Soo-Young;Sul, Woo-Hwan;Chang, Yun-Jeong
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.191-191
    • /
    • 2006
  • The structures of the mesophases and their subunits of PS-b-P4VP in a toluene solution were studied by using SAXS, TEM and GIFT methods. The hierarchical structures of PS-b-P4VP, such as the individual micelle, the face-centered cubic (fcc) and body-centered cubic (bcc) structures and the lamellar structure, were identified for the first time. The diameter of the micelle core was ${\sim}80\;%$ of the most extended chain length of the core chain, suggesting that the core chains were quite stretched. The stretched chain in the core caused the core of the micelle to be not homogenous with a higher density at the center than at the outer part. As the concentration level increases, the fcc and both fcc and bcc appear for the packing of the micelles of PS(3.3k)-b-P4VP(4.7K) and PS(12K)-b-P4VP(11.8K), respectively. The lamellar structure was also identified, with a further increase in the concentration for PS(3.3k)-b-P4VP(4.7K). These hierarchical structures were also identified via TEM images.

  • PDF

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Hexagonal to Cubic Phase Transition in the $D_2O$-Induced Reverse Micellar Solution of a PEO-b-PPO-b-PEO Block Copolymer

  • Kim, Do-Hyun;Ko, Yoon-Soo;Kwon, Yong-Ku
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.62-65
    • /
    • 2008
  • The morphology of the $D_2O$-induced reverse micellar structure of an amphiphilic block copolymer of poly( ethylene oxide )-b-poly(propylene oxide )-b-poly( ethylene oxide )($EO_{76}PO_{29}EO_{76}$) was investigated in hydrophobic media by small angle neutron scattering (SANS). Increasing $D_2O$ in the styrene/divinylbenzene solution of $EO_{76}PO_{29}EO_{76}$ led to a change in morphology of the reverse micelles from a short range ordered molecular aggregate to a hexagonally arranged micelle, and further to a spherical micelle.