• Title/Summary/Keyword: Polymer light-emitting diodes

Search Result 143, Processing Time 0.034 seconds

The use of ZrO2 as an electron-injecting layer in hybrid metal-oxide/polymer light-emitting diodes

  • Tokmoldin, Nurlan;Bradley, Donal D.C.;Haque, Saif
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.779-780
    • /
    • 2009
  • New inverted architecture of a hybrid inorganic-organic light-emitting diode, utilizing ZrO2 electron-injecting layer, is presented. The thickness of the ZrO2, as well as the annealing of the light-emitting polymer, is found critical to obtain good performance. A range of light-emitting polymers is shown to operate efficiently in the proposed architecture.

  • PDF

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

The Investigation of Photolithographic Patterning Method for Polymer Light Emitting Diodes (PLEDs) (고분자 전기 발광 다이오드(PLEDs)를 위한 포토리소그라피 패터닝 방법에 관한 연구)

  • Kim, Mi-Kyung;Lee, Jeong-Ik;Kim, Duck-Il;Hwang, Chi-Sun;Yang, Yong-Suk;Oh, Ji-Young;KoPark, Sang-He;Chu, Hye-Yong;Kim, Suk-Kyung;Hwang, Do-Hoon;Lee, Hyung-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.106-108
    • /
    • 2004
  • We have investigated the photolithographic patterning method of light emitting polymer film for polymer light emitting diodes (PLED). Blue light emitting polymers based on polyfluorene, which can be cured photochemically to yield an insoluble form, have been synthesized using Ni(0) mediated Yamamoto polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope analysis, UV/visible spectroscopy, and photoluminescence. We have successfully fabricated PLEDs composed of the patterned emissive layer and their electroluminescence property has been also investigated. In this presentation, the detailed photolithographic patterning method and its application for polymer light emitting display will be discussed.

  • PDF

Charge Trapping Host Structure for High Efficiency in Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jun-Yeob
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.14-17
    • /
    • 2008
  • A charge trapping host structure was developed to improve the light-emitting efficiency of green phosphorescent organic light-emitting diodes. N, N'-dicarbazolyl-3,5-benzene(mCP) and a spirobifluorene based triplet host(PHl) were co-deposited as hosts in the emitting layer and the device performance was examined according to the composition mCP and PH1. The results showed that the quantum efficiency could be improved by 30 % using a mixed host of mCP and PH1.

Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes (고분자 전기인광소자에서의 에너지 전이, 소자 특성 및 인광염료의 리간드 변화에 따른 광학적, 전기적 특성 변화)

  • Lee Chang-Lyoul;Das R. R.;Noh Young-Yong;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.107-121
    • /
    • 2005
  • Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically $100\%$ internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.

Light-emitting diodes using gold nanoparticles (금 (gold) 나노 입자를 이용한 고분자 발광소자)

  • Park, Jong-Hyeok;Lim, Yong-Taik;Park, O-Ok;Kim, Jae-Kyeong;Yu, Jae-Woong;Kim, Young-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.119-122
    • /
    • 2003
  • We report a dramatic increase in the photo-stability of a blue-emitting polymer, poly(9,9-dioctylfluorene), achieved by the addition of gold nanoparticles to the polymer. The optical absorption band of gold nanoparticles is tuned to resonate the triplet exciton-ground state band gap energy of the polymer. The photo-oxidation rate of poly(9,9-dioctylfluorene) was drastically reduced by doping the polymer with a very small amount ($10^{-6}-10^{-5}$ volume fraction) of gold nanoparticles. The gold nanoparticles used herein act as the quenching agent of the triplet states and can be directly applied to various blue light emitting polymer thin film ( < 100 nm ) devices.

  • PDF

The Investigation of Photolithographic Patterning Method for Polymer Light Emitting Diodes

  • Kim, Mi-Kyung;Lee, Jeong-Ik;Kim, Duck-Il;Oh, Ji-Young;Hwang, Chi-Sun;KoPark, Sang-He;Yang, Yong-Suk;Chu, Hye-Yong;Kim, Suk-Kyung;Hwang, Do-Hoon;Lee, Hyung-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.592-594
    • /
    • 2004
  • We have investigated the photolithographic patterning method of light emitting polymer film for polymer light emitting diodes (PLEDs). Blue light emitting polymers based on polyfluorene, which can be cured photochemically to yield an insoluble form, have been synthesized using Ni(0) mediated Yamamoto polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope analysis, UV/visible spectroscopy, and photoluminescence. We have successfully fabricated PLEDs composed of the patterned emissive layer and their electroluminescence property has been also investigated. In this presentation, the detailed photolithographic patterning method and its application for polymer light emitting display will be discussed.

  • PDF

Correlation between host materials and device performances of phosphorescent white organic light-emitting diodes with blue/orange/blue stacked emitting structure

  • Joo, Chul-Woong;Kim, Sung-Hyun;Yook, Kyoung-Soo;Jeon, Soon-Ok;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.439-442
    • /
    • 2008
  • A mixed host structure of TCTA and TPBI was used in orange emitting layer and host composition was critical to device performances of PHWOLEDs. PHWOLEDs with TPBI host in orange emitting layer showed high quantum efficiency of 10.3 % at $1000\;cd/m^2$ with little change of CIE coordinates of (0.32, 0.34) from $100\;cd/m^2$ to $10,000\;cd/m^2$.

  • PDF

Performance Improvement of Polymer Light Emitting Diodes by Insertion of a Silane Layer

  • Lee, Jun-Yeob
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.1-4
    • /
    • 2007
  • The influence of a silane layer on the performances of polymer light emitting diode(pLED)s has been studied. Glycidoxypropyltrimethoxysilane(GPS) with an epoxy functional group was used as a surface modifier for ITO substrates. The GPS layer was inserted between an ITO and a poly(3,4)-ethylenedioxythiophene/polystyrenesulfonate(PEDOT) by wet process and the performances of PLEDs were investigated. The introduction of GPS layer increased the brightness and efficiency of PLEDs by 30%. In addition, the lifetime of PLEDs was also improved considerably by using GPS as a surface modifier.