• Title/Summary/Keyword: Polymer insulators

Search Result 115, Processing Time 0.025 seconds

Evaluation of Ageing Characteristics of Polymeric Insulators for Distribution Lines by Tracking Wheel Test (Tracking wheel 시험을 통한 배전용 폴리머애자 열화특성 평가)

  • Lee, Byung-Sung;Han, Jae-Hong;Han, Yong-Heui;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2314-2316
    • /
    • 1999
  • This study describes the results of aging characteristics of polymer insulators through the tracking wheel test. In order to evaluate the reliability of polymer insulators, 4 polymer insulators which used in the field were selected. Electrical tests such as power frequency voltage test, steep-front impulse voltage test were performed after tracking wheel test. Chemical structure and contact angle were measured for investigating an aging characteristics. Although some changes have occurred on the surface of insulator, there are no critical changes between new and tracking wheel tested insulator.

  • PDF

The analysis of leakage current characteristics of polymer insulators for estimation under Pollution conditions (고분자 절연물의 내오손 진단을 위한 누설전류 특성 해석)

  • Kim, I.S.;Han, S.W.;Cho, H.G.;Soh, J.J.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1452-1454
    • /
    • 1997
  • Properties of flashover in polymer insulators are very important under pollution environments. It is necessary to analyse flashover characteristics whether insulators are still safe or not. A lot of precious information can be got out of polluted polymer insulators through leakage current measurement. The behavior of partial arc discharge leads to flashover directly. It is possible to measure partial arc discharge as leakage current pulses analysis. The shape of histogram reflects degree of pollution, wetting and voltage stress level. It can be expressed by Weibull distribution function.

  • PDF

A Combined Aging Test Facility for Evaluating an Aging Characteristics of Distribution Polymer Insulators (배전용 폴리머애자 열화특성 평가를 위한 복합열화 시험장치 구축)

  • Lee, Byung-Sung;Han, Jae-Hong;Kim, Chan-Young;Yoon, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1948-1950
    • /
    • 2000
  • Polymeric composite insulators have been in use for outdoor insulation. However, our knowledge about their long-term performance in an outdoor environment is still very limited. Especially, these insulators are subjected to the environmental stress such as ultraviolet radiation, electrical stress, mechanical load, etc.. Hence, in this paper, we simulated the factors having influence on aging of polymer insulators using the combined aging test chamber. In order to evaluate an aging characteristics with time, we measured leakage current on these insulators to make out the degree of aging.

  • PDF

The Evaluation of Flashover Characteristics of Polymer Insulators with Tracking Wheel Test (트래킹 휠 시험에 의해 열화된 폴리머애자의 섬락특성 평가)

  • Lee, Byung-Sung;Han, Jae-Hong;Yoon, Tae-Sang;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.82-85
    • /
    • 2000
  • Polymeric composite insulators are used for outdoor insulation. However, our knowledge about their long-term performance in an outdoor environment is still very limited. The electrical stress caused the surface of these insulators to become degradation. In order to evaluate the tracking resistance of polymer insulators, we performed the tracking wheel test which is recommended by CEA LWIWG-01. And the flashover voltage tests were conducted for understanding electrical characteristics after tacking wheel test. Also, these insulators are studied by characterization methods such as contact angle measurement, SEM, etc.

  • PDF

Multi-Stress Aging Test Technology for Suspension Polymer Insulator (폴리머 현수애자의 복합가속열화 평가기술)

  • Park, Hoy-Yul;Kang, Dong-Pil;Kim, Ik-Soo;Shin, Young-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.481-484
    • /
    • 2003
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators have significant advantages over porcelain and glass insulators. With the gradual improvement of their design and material, their reliability has also increased. It is however difficult to establish how they will perform after several years of service. Aging of the insulator weathershed may lead to damages such as excessive chalking and crazing, erosion and tracking which affect the insulator performance. In service insulator are subjected to aging stresses such as humidity, pollution and electrical field which act singly or in combination. There have been numerous accelerated laboratory tests developed with the intention of evaluating suitability of polymeric materials. Some of these are strictly material tests, where as, others evaluate full scale devices. Service experience plays a key role in the utility selection of polymer insulator, but is time consuming, and may not always be available. Hence there is a need for a meaningful and reliable accelerated aging test for polymer insulator. This paper describes multi-stress aging test for reliability of polymer insulator This paper presents the rule of multi-stress aging test and test chamber for polymer insulator in korea electrotechnology research institute.

  • PDF

A Study on The Distribution of Surface Charge Density on Polymer Insulators (고분자애자의 표면전하밀도 분포에 관한 연구)

  • Yang, J.J.;Hwang, B.M.;Kim, K.S.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.354-356
    • /
    • 1997
  • In this paper, we study the distribution of surface charge density on polymer insulators. The electric field of polymer insulators is calculated by axisymetric 3-D FEM with dc source. And the surface charge density is calculated by electric scalar potential and boundary condition for electrostatic fields. Simulation model is the inclined type polymer insulator with a shed.

  • PDF

Pentacene Thin Film Transistors with Various Polymer Gate Insulators

  • Kim, Jae-Kyoung;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun-Ho;Jeon, D.;Kim, Yong-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.118-122
    • /
    • 2009
  • Organic thin film transistors with a pentacene active layer and various polymer gate insulators were fabricated and their performances were investigated. Characteristics of pentacene thin film transistors on different polymer substrates were investigated using an atomic force microscope (AFM) and x-ray diffraction (XRD). The pentacene thin films were deposited by thermal evaporation on the gate insulators of various polymers. Hexamethyldisilazane (HMDS), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA) were fabricated as the gate insulator where a pentacene layer was deposited at 40, 55, 70, 85, 100 oC. Pentacene thin films on PMMA showed the largest grain size and least trap concentration. In addition, pentacene TFTs of top-contact geometry are compared with PMMA and $SiO_2$ as gate insulators, respectively. We also fabricated pentacene TFT with Poly (3, 4-ethylenedioxythiophene)-Polysturene Sulfonate (PEDOT:PSS) electrode by inkjet printing method. The physical and electrical characteristics of each gate insulator were tested and analyzed by AFM and I-V measurement. It was found that the performance of TFT was mainly determined by morphology of pentacene rather than the physical or chemical structure of the polymer gate insulator

Bending strength of GFRP for Insulator according to Winding Angle (전기절연물용 GFRP의 winding 각도에 따른 굽힘강도)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.429-432
    • /
    • 2004
  • The demand for electric power keeps growing, and tends to be more effective. Polymer insulators have been manufactured for almost twenty years and the excellent insulation performance of polymer insulators is attractive. Polymeric materials are now widely used as a replacement for inorganic materials such as porcelain or glass for the outdoor insulation of high voltage insulation. GFRP has been used widely as a core materials for polymer insulators. This paper reports the mechanical properties of GFRP for insulators. The bending strength was simulated and evaluated according to the winding angle. The fiber orientation in GFRP has a great effect on the strength of GFRP because the strength of GFRP mainly depends on the strength of fiber. Results of simulated and evaluated strength of GFRP were compared each other. The simulated strength of GFRP rod was different from the evaluated strength. It was caused that the shear stress had a great effect on the strength of GFRP although the stress of parallel direction of GFRP was much higher.

  • PDF

A Simulation for Kaolin Contaminants Accumulation and Varying Characteristics of Leakage Currents (Kaolin 오손물 누적량 모의실험 및 누설전류변화 특성)

  • ark, Jae-.Jun;Song, Il-keun;Lee, Jae-bong;Chun, Sung-nam
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.11
    • /
    • pp.483-489
    • /
    • 2005
  • This study performs a simulation for an accumulation mechanism of contaminants, which were produced in an industrial belt of inland, on the surface of insulators. From the simulation, silicon insulators presented higher accumulation than that of EPDM(Ethylene Propylene Diene Terpolymer : EPDM) insulators on the same distance in the case of the Virgin polymer insulator, and this result presented the same result in the insulator applied in actual fields. In the case of the accumulation test for the Virgin insulator and insulators used in actual fields, it is evident that the Virgin insulator presented more accumulation than that of the insulator used in actual fields. The results can be caused by the generation of LMW (Low Molecular Weight) on the external material of polymer insulators, and the level of the accumulation can be changed according to the degree of the continuous generation of LMW. In order to simulate a certain pollution of an industrial belt, which is located along the coastline, leakage currents were measured by applying the contaminant compulsively that was produced with salts and Kaolin according to the ratio of its weight on the surface of insulators. The more increase in the content of Kaolin pollution, the level of leakage currents on the surface of polymer insulator more increased. In addition, the approaching time to the maximum value of leakage currents presented a nearly constant level regardless of the content of Kaolin. The level of leakage currents significantly decreased according to the passage of time, and the level of leakage currents on the surface maintained a constant level at a specific time regardless of the content of Kaolin.

Investigation on Flashover Development Mechanism of Polymeric Insulators by Time Frequency Analysis

  • Muniraj, C.;Krishnamoorthi, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1503-1511
    • /
    • 2013
  • This paper deals with the analysis of leakage current characteristics of silicone rubber insulator in order to develop a new condition monitoring tool to identify the flashover of outdoor insulators. In this work, laboratory based pollution performance tests are carried out on silicone rubber insulator under ac voltage at different pollution levels and relative humidity conditions with sodium chloride (NaCl) as a contaminant. Min-Norm spectral analysis is adopted to calculate the higher order harmonics and Signal Noise Ratio (SNR). Choi-Williams Distribution (CWD) function is employed to understand the time frequency characteristics of the leakage current signal. Reported results on silicone rubber insulators show that the flashover development process of outdoor polymer insulators could be identified from the higher order harmonics and signal noise ratio values of leakage current signals.