• Title/Summary/Keyword: Polymer electrolyte membranes

Search Result 208, Processing Time 0.028 seconds

Preparation and Characterization of Block Copolymer Containing Bisphenyl Propane Unit and Nanosilica Composite Membrane for Fuel Cell Electrolyte Application (비스페닐프로판 단위를 갖는 연료전지전해질용 블록공중합체/나노실리카 복합막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.144-149
    • /
    • 2017
  • A proton-conducting bisphenylpropaned sulfonated fluorinated blockcopolymer (BPSFBC) was synthesized. Five kinds of polymer electrolyted composite membranes were preparated by incorporating silica ($SiO_2$) with various weight ratio. And their characteristics were investigated by FT-IR (fourier transform infrared), $^1H-NMR$ ($^1H$ nuclear magnetic resonance), TGA (thermogravimetric analysis), water uptake, FE-SEM (field emission scanning electron microscopes), and ion conductivity properties. The water uptake and ion conductivity were increased until 9 wt% $SiO_2$, and then decreased. The maximum proton conductivity equal to $52mScm^{-1}$ was measured for the BPSFBC/$SiO_2$-9 composite membrane at $90^{\circ}C$ and 100% relative humidity. From the measured results, it is distinct that the manufactured composite membrane BPSFBC/$SiO_2$-9 can be considered as a polymer membrane suitable for a fuel cell electrolyte.

Synthesis and Properties of Sulfonated Poly (Arylene Ether Sulfone) Block Copolymers with Naphthalene Moiety for Polymer Electrolyte Fuel Cells (고분자 전해질형 연료전지용 나프탈렌 부분을 갖는 술폰화된 폴리(아릴렌 이써 설폰) 블록 공중합체의 합성과 특성연구)

  • HAN, DASOM;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.331-338
    • /
    • 2018
  • In this study, sulfonated PAES block copolymers have been synthesized via nucleophilic substitution reaction. Hydrophobic oligomer was prepared using 2,6-dihydroxynaphthalene and bis(4-chlorophenyl) sulfone, whereas hydrophilic oligomer was prepared using sulfonated bis(4-chlorophenyl) sulfone and bis(4-hydroxyphenyl) sulfone. The chemical structure of polymers was analyzed by $^1H$ NMR, FT-IR and GPC. The thermal properties of polymers were measured by TGA and DSC. The oxidative stability of membranes was investigated by Fenton's test. Furthermore, the proton conductivity of membrane was found to be 26 mS/cm at $90^{\circ}C$. All physiochemical properties suggest that fabricated membrane have a great potential for applications in PEMFC.

Research Trend and Prospect of Membranes for Water Electrolysis (수전해용 분리막 연구 동향 및 전망)

  • Lee, Jae Hun;Cho, Won Chul;Kim, ChangHee
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.4
    • /
    • pp.1-21
    • /
    • 2021
  • 화석연료의 과도한 사용으로 유발된 기후변화 문제를 해결하기 위해 대체에너지의 개발에 대한 관심이 높아지고 있는 가운데 재생가능하며 친환경적인 수소에너지가 실현가능한 궁극적 대안으로 주목받고 있다. 다양한 수소 생산 기술 중 물의 전기분해를 이용한 수전해 기술은 온실가스와 같은 오염물질을 배출하지 않으며 재생에너지와 연계하여 미이용 전력을 대용량 장주기로 저장할 수 있다는 장점이 있다. 수전해 장치는 수소와 산소를 발생하는 전극과 기체의 섞임을 방지하고 이온을 전달하는 분리막으로 구성되며 그 중 분리막은 수전해 장치의 효율과 안정성을 결정짓는 핵심 부품이다. 본 총설에서는 수전해 기술 중 저온 수전해에 해당하는 알칼라인 수전해(alkaline water electrolysis), 고분자전해질막 수전해(polymer electrolyte membrane water electrolysis)와 음이온교환막 수전해(anion exchange membrane water electrolysis)에 사용되는 분리막에 대한 특성을 분석하고 최근 연구 동향에 대해서 다루고자 한다.

Evaluation of Commercial Anion Exchange Membrane for the application to Water Electrolysis (수전해 시스템에 적용하기 위한 상용 음이온교환막의 특성평가)

  • Jun Ho, Park;Kwang Seop, Im;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.496-513
    • /
    • 2022
  • In this study, we sought to verify the applicability of anion exchange membrane water electrolysis system using FAA-3-50, Neosepta-ASE, Sustainion grade T, and Fujifilm type 10, which are commercial anion exchange membranes. The morphology of the commercial membranes and the elements on the surface were analyzed using SEM/EDX to confirm the distribution of functional groups included in the commercial membranes. In addition, mechanical strength and decomposition temperature were measured using UTM and TGA to check whether the driving conditions of the water electrolyte were satisfied. The ion exchange capacity and ion conductivity were measured to understand the performance of anion exchange membranes, and the alkaline resistance of each commercial membrane was checked and durability test was performed because they were driven in an alkaline environment. Finally, a membrane-electrode assembly was manufactured and a water electrolysis single cell test was performed to confirm cell performance at 60℃, 70℃, and 80℃. The long-term cell test was measured 20 cycles at other temperatures to compare water electrolysis performance.

Preparation and Characterization of Plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) Graft Copolymer Electrolyte Membranes (가소화된 Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) 가지형 고분자 전해질막 제조 및 분석)

  • Seo, Jin-Ah;Koh, Jong-Kwan;Koh, Joo-Hwan;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer was synthesized via atom transfer radical polymerization (ATRP) and used as an electrolyte for electrochromic device. Plasticized polymer electrolytes were prepared by the introduction of propylene carbonate (PC)/ethylene carbonate (EC) mixture as a plasticizer. The effect of salt was systematically investigated using lithium tetrafluoroborate ($LiBF_4$), lithium perchlorate ($LiClO_4$), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) measurements showed that the structure and glass transition temperature ($T_g$) of polymer electrolytes were changed due to the coordinative interactions between the ether oxygens of POEM and the lithium salts, as supported by FT-IR spectroscopy. Transmission electron microscopy (TEM) showed that the microphase-separated structure of PVC-g-POEM was not greatly disrupted by the introduction of PC/EC and lithium salt. The plasticized polymer electrolyte was applied to the electrochromic device employing poly(3-hexylthiophene) (P3HT) conducting polymer.

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Preparation and Characterization of Random Copolymer Electrolyte Membranes Containing PFCB (Perfluorocyclobutane) Group (PFCB (Perfluorocyclobutane) Group을 포함한 랜덤 공중합체 고분자 전해질 막 제조 및 특성연구)

  • Kim Jeong-Hoon;Kim Dong-Jin;Chang Bong-Jun;Lee Soo-Bok;Joo Hyeok-Jong
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.221-229
    • /
    • 2006
  • This study is about the preparation and characterization of sulfonated random copolymer membranes containing perfluorocyclobutane (PFCB), fluorenyl, and sulfonyl units. The polymers were prepared through three synthetic steps, that is, the synthesis of a trofluorovinylether-terminated monomer, its thermal polymerization, and post-sulfonation using chlorosulfonic acid. A series of sulfonated random copolymers with different ion exchange capacity (IEC) were prepared by changing contents of fluorenyl uints in polymers with fixed molar ratio of chlorosulfonic acid during the post-sulfonation reaction. All the synthesized compounds were characterized by FT-lR, $^1H-NMR$, $^{19}F-NMR$, and Mass spectroscopy. As the content of sulfonated fluorenyl units increased, the IEC, water uptake, and ion conductivity of the sulfonated random copolymer membranes increased. The sulfonated random copolymer S-1 and S-2 showed higher values of ion conductivity than the Nafion-115 in a wide range of temperatures ($25{\sim}80^{\circ}C$).

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer (ABA 트리블록 공중합체를 이용한 무가습 가교형 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Lee, Do-Kyoung;Roh, Dong-Kyu;ShuI, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2009
  • ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.

Current R&D Status of Fuel Cell Membranes by Radiation in Korea (방사선을 이용한 연료전지막 국내 제조 기술 개발 현황)

  • Shin, Junhwa;Sohn, Joon-Yong;Nho, Young-Chang;Kang, Tai-Jin;Kim, Dong-Soo;Im, Don-Sun;Lee, Byoung Hun;Kim, Jae-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.289-297
    • /
    • 2012
  • Since Nafion is very expensive and shows the decreased fuel cell performance over $80^{\circ}C$ operating temperature, much work has been carried out in the search for cheaper membrane with high fuel cell performance. Radiation is known to be very useful for the preparation of the polymer electrolyte membranes since it can be effectively used for the introduction of ion conducting functional groups into the commercial film with high mechanical and chemical properties. Here, we summarize the our recent progress in the development of fuel cell membranes by utilizing radiation.