• 제목/요약/키워드: Polymer electrolyte fuel cells

검색결과 263건 처리시간 0.028초

고분자전해질 연료전지 예지 진단 기술 (A Review on Prognostics of Polymer Electrolyte Fuel Cells)

  • 이원용;김민진;오환영;손영준;김승곤
    • 한국수소및신에너지학회논문집
    • /
    • 제29권4호
    • /
    • pp.339-356
    • /
    • 2018
  • Although fuel cell systems have advantages in terms of electric efficiency and environmental impact compared with conventional power systems, fuel cell systems have not been deployed widely due to their low reliability and high price. In order to guarantee the lifetime of 10 years, which is the commercialization goal of Polymer electrolyte fuel cells (PEFCs), it is necessary to improve durability and reliability through optimized operation and maintenance technologies. Due to the complexity of components and their degradation phenomena, it's not easy to develop and apply the diagnose and prognostic methodologies for PEFCs. The purpose of the paper is to show the current state on PEFC prognostic technology for condition based maintenance. For the prognostic of PEFCs, the model driven method, the data-driven, and the hybrid method can be applied. The methods reviewed in this paper can contribute to the development of technologies to reduce the life cycle cost of fuel cells and increase the reliability through prognostics-based health management system.

촉매조성이 PEM용 연료전지의 전극특성에 미치는 영향 (Influence of the Catalyst Composition on Electrode Performance for Polymer Electrolyte Membrane Fuel Cells)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제9권3호
    • /
    • pp.43-48
    • /
    • 2002
  • 본 연구는 고분자 전해질 연료전지에 이용하기 위한 membrane electrode assembly를 제조하는데 있어서 핵심소재인 고성능 전극촉매를 개발하기 위한 것이다. 전극 성능에 영향을 미치는 촉매 조성물 중 Nafion용액과 백금 함침량을 변화시켜 I-V특성을 측정하였다. 또한, 연료전지의 운전조건 중 단위전지의 온도에 따른 전극 성능의 변화를 관찰하였다. Nafion 용액이 5 wt%, 백금 함침량이 0.5 mg/$\textrm{cm}^2$의 조성이 될 때, 전극 성능이 가장 우수하였다. Nafion용액의 함량이 증가할수록 전극 성능은 저하하였다. 또한, 단위전지는 온도가 $80^{\circ}C$가 되었을 때, I-V 특성이 가장 우수함을 알 수 있었다. 저전류밀도에서의 성능차이는 거의 없으나, 고전류밀도에서는 온도가 상승됨에 따라 전압값이 향상됨을 알 수 있었다.

  • PDF

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.

술폰화된 폴리에테르에테르케톤 및 산도핑 ABPBI 고분자 전해질막 제조와 고분자전해질연료전지 응용을 위한 MEA 개발 (Preparation of Sulfonated Poly(Ether Ether Ketone) and Acid-Doped ABPBI Polymer Electrolyte Membranes and Development of Their MEA for Polymer Electrolyte Membrane Fuel Cells)

  • 박진수;;양태현;박구곤;임성대;윤영기;이원용;김창수
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.83-86
    • /
    • 2005
  • PDF

The Analysis on the Activation Procedure of Polymer Electrolyte Fuel Cells

  • Jang, Jong-Mun;Park, Gu-Gon;Sohn, Young-Jun;Yim, Sung-Dae;Kim, Chang-Soo;Yang, Tae-Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.131-135
    • /
    • 2011
  • It is, in general, believed that during the activation process, the proton conductivity increases due to wetting effect and the electrochemical resistance reduction, resulting in an increase in the fuel cell performance with time. However, until now, very scant information is available on the understanding of activation processes. In this study, dominant variables that effect on the performance increase of membrane electrode assemblies (MEAs) during the activation process were investigated. Wetting, pore restructuring and active metal utilization were analyzed systematically. Unexpectedly, the changes for both ohmic and reaction resistance characterized by the electrochemical impedance spectroscopy (EIS) after initial wetting process were much smaller when considering the degree of cell performance increases. However, the EIS spectra represents that the pore opening of electrode turns into gas transportable structure more easily. The increase in the performance with activation cycles was also investigated in a view of active metals. Though the particle size was grown, the number of effective active sites might be exposed more. The impurity removal and catalytic activity enhancement measured by cyclic voltammetry (CV) could be a strong evident. The results and analysis revealed that, not merely wetting of membrane but also restructuring of electrodeand catalytic activity increase are important factors for the fast and efficient activation of the polymer electrolyte fuel cells.

Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells

  • Cho Hyun-Dong;Won Jong-Ok;Ha Heung-Yong;Kang Yong-Soo
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.214-219
    • /
    • 2006
  • Cast Nafion-based composite membranes containing different amounts of organic, nanorod-shaped polyrotaxane were prepared and characterized, with the aim of improving the properties of polymer electrolyte membranes for direct methanol fuel cell applications. Polyrotaxane was prepared using the inclusion-complex reaction between ${\alpha}$-cyclodextrin and poly(ethylene glycol) (PEG) of different molecular weights. The addition of polyrotaxane to Nafion changed the morphology and reduced the crystallinity. The conductivity of the composite membranes increased with increasing polyrotaxane content up to 5 wt%, but then decreased at higher polyrotaxane contents. Well-dispersed, organic polyrotaxane inside the membrane can provide a tortuous path for the transport of methanol, as the methanol permeability depends on the aspect ratio of polyrotaxane, which is controlled by the molecular weight of PEG. All of the Nafion-based, polyrotaxane composite membranes showed a higher selectivity parameter than the commercial Nafion films did.

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

Noble Metal이 코팅된 금속분리판 개발 및 성능 평가 (Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells)

  • 서하규;한인수;정지훈;김민성;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF

고분자 전해질 연료전지의 매니폴드 설계 및 해석 (NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL)

  • 정혜미;엄석기;박정선;이원용;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구 (Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells)

  • 정혜미;엄석기;손영준;박정선;이원용;김창수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF