• Title/Summary/Keyword: Polymer drug

Search Result 518, Processing Time 0.023 seconds

Effects of Polymer-Drug Interactions on Drug Release from Sustained Release Tablets (서방정으로부터의 약물 용출에 대한 고분자-약물 상호작용의 영향)

  • Kim, Haeng-Ja;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 1996
  • To develop oral controlled release dosage forms, ionic interactions between polymers and drugs were evaluated. Hydroxypropylmethyl cellulose and carboxymethylene were used as model nonionic and ionic polymers, respectively. 5-fluorouracil, propranolol-HCl and sodium salicylate were selected as model nonionic, cationic and anionic, respectively. Polymer-drug mixtures were compressed into tablets and drug release kinetics from these tablets were determined. Drug release from the tablets made of the nonionic polymer was not affected by the charge of drugs, rather, was regulated by the solubility of drugs in different pH releasing media. However, drug release kinetics were significantly affected when drug-polymer ionic interactions exist. Enhanced drug release was observed from anionic drug-anionic polymer tablets due to ionic repulsion, whereas drug release was retarded in cationic drug-anionic polymer tablets owing to ionic attractive force. Therefore, the results suggested that the polymer-drug interactions are important factors in designing controlled release dosage forms.

  • PDF

Synthesis and Antibiotic activity of Dextran-Phthalysulfathiazole (Dextran-Phthalylsulfathiazole의 합성과 항균성)

  • 김판기;이기창;황성규;오세영
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.3
    • /
    • pp.228-233
    • /
    • 1997
  • Drug Dclivcry system (DDS) purpose to getting better remedial result by improving medication from ordinary methods. Applied for DDS, to improve selectivity and comtinuity during absorbing and delivery step, polmer drug (prodrug) was prepared by the esterification with dextran in such of biodegradable polymer and phthalylsulfathiazole with is efficient for entilitis. The polymer durg was prepared with dextran and phthalylsulfathiazole by the esterification. The synthetic procedures of polymer drug was performed by acid chloride and DCC methods. Polymer drug was synthesized in high yield by acid chloride method than DCC method. The antibiotic activities of polymer drug exhibited growth-inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, E. coli, Salmonella typhimurium, Klebsiella pneumoniae at the concentration of 500 *g/m* in general through in vitro. As a result of test, polymer drug has 1/2 MIC than phthalylsulfathiazole. Also, it has high level MIC as much as phthalylsulfathiazole with Proteus, Pseudomonas. We conducted possibility of DDS as an applied for medicine with synthesized polymer drug by using natrural polymer. We consider that clinical research must be followed to verify safety and efficacy for controlled release, activity and toxicity.

  • PDF

Preparation and Release Characteristics of Polymer-Reinforced and Coated Alginate Beads

  • Lee, Beom-Jin;Min, Geun-Hong
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.183-188
    • /
    • 1995
  • Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available $Eudragit^{\circledR}$ RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize $Eudragit^{\circledR}$ RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-reinforcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.

  • PDF

Synthesis and Antibacterial Activity of Polyacrylic Acid (PAA)-Sulfacetamide (Polyacrylic acid(PAA)-Sulfacetamide 의 합성과 항균성)

  • 김종완;김용렬;이우윤
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.106-111
    • /
    • 2001
  • Recently there were many studies not only to enhance drug delevery effect but to reduce side effect. Drug delivery system efficiency with decreasing side effect of drug dosage. It made possibility to use for a long term. Polymer drug was prepared by acid halide method with polymer in such of polyacylic acid and sulfacetamide. Its chemical properties were identified by means of IR, TGA. The antibacterial activities of polymer drug were studied by MICs and disk susceptivility test. The antibacterial activities by clean zone were increased in order of Staphyloccus aures

  • PDF

A Model for Diffusion and Dissolution Controlled Drug Release from Dispersed Polymeric Matrix (고분자 분산 매트릭스로부터의 약물방출에 관한 확산 및 용출 제어 모델)

  • Byun, Young-Rho;Choi, Young-Kweon;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.79-88
    • /
    • 1990
  • A numerical model for diffusion and dissolution controlled transport from dispersed matrix is presented. The rate controlling process for transport is considered to be diffusion of drug through a concentration gradient coupled with time-dependent surface change and/or disappearance of the dispersed drug in response to the dissolution. The transport behavior of drug was explained in terms of ${\nu}$ parameter: ${\nu}$ value means a ratio of diffusion time constant and dissolution time constant. This general model has wide range of application from where release is controlled by the diffusion rate to where release is governed by the dissolution rate. Based on this model, theoretical drug concentration, particle size distributions in the polymer matrix system and the resulting release rate were also investigated.

  • PDF

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.

Skin Permeation Characteristics of Antihyperlipoproteinemic Agent using Natural Polymer Bases in Rats (천연고분자 기재에 의한 수용성 항고지단백혈증제의 흰쥐 피부투과 특성)

  • Kong, Seung-Dae;Hwang, Sung-Kwy;Jung, Duck-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.126-131
    • /
    • 2000
  • Transdermal therapeutic system(TTS) is often used as the method of drug dosage into the epidermic skin. Natural polymer were selected as ointment material of TTS. We investigated the permeation of natural polymer ointment containing drug in rat skin using horizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug such as oxiniacic acid in vitro. These results showed that skin permeation rate of drug across the composite was mainly dependent on the property of ointment base and drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. This result suggests a possible use of natural polymer ointment base as TTS of antihyperlipoproteinemic agent.

Design of Oral Patches for the Treatment of Aphthous Stomatitis : Drug Layer (아프타성 구내염 치료용 구강 패취의 설계 : 약물층)

  • Lee, Kyu-Hyun;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.339-345
    • /
    • 1995
  • For the effective treatment of aphthous stomatitis, the matrix type mucoadhesive patches containing triamcinolone acetonide have been formulated. The drug layer was obtained by drying the polymer gel which was prepared with carbomer 934P, ammoniomethacrylate copolymer, titanium dioxide and polyethylene glycol 400. The effects of the content of additives on physical characteristics of the polymer gel and the drug layer were evaluated. The addition of carbomer increased the yield point and the zero-shear viscosity of polymer gel as well as the thickness, the water absorption ratio, the adhesive time and $T_{50%}$ of drug layer. The adhesive time and the water absorption ratio of drug layer were also improved by the addition of ammoniomethacrylate copolymer, but the addition of titanium dioxide had decreased the zero-shear viscosity of polymer gel and the adhesive time of drug layer.

  • PDF

Synthesis and Antibacterial Activity of Chitosan-Phthalylsulfathiazole (Chitosan-phthalylsulfathiazole의 합성과 항균성)

  • 최봉종;이기창;황성규;오세영;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.50-56
    • /
    • 1997
  • Applied for Drug Delivery System, polymer drug was prepared with chitosan and phthalylsulfathiazole. In spite of various application of chitin derivatives, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. In this study, Chitosan were prepared from chitin which were deacetylated under various condition. The synthetic procedures of polymer drug were performed by acid chloride methods. The antibiotic activities of polymer drug exhibited growth-inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, E. coli, Salmonella typhimurium, Klebsiella pneumoniae at the concentration of 471-514 $\mu$g/ml in general. Comparatively, Polymer drug exhibited broad antibacterial activity on MICs 897-1280 $\mu$g/ml against Gram-positive and Gram-negative bacteria including Staphylococcus aureus, Staphylococcus epidermidis and E. coli.

  • PDF

Modeling for Multilayered Polymer Matrix Drug Delivery Device (다층구조로 된 고분자 제형의 약물 방출에 대한 모델링)

  • Byun, Young-Rho;Jeong, Seo-Young;Kim, Young-Ha
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 1989
  • The multilayered monolithic type transdermal delivery device has been designed and analyzed by a numerical analysis. The device consists of three layered polymer matrices which posess the different diffusion parameters, respectively. The purpose of this study was to design an ideal transdermal drug delivery device which is capable of initial burst and zero order release later on. Numerical modelings were simulated for a dispersed and a dissolved multilayered monolithic system. The results showed that the dispersed multilayered monolithic system could meet the requirements for an ideal transdermal delivery device.

  • PDF