• Title/Summary/Keyword: Polymer beads

Search Result 91, Processing Time 0.028 seconds

Affinity Separations Using Microfabricated Microfluidic Devices: In Situ Photopolymerization and Use in Protein Separations

  • Chen Li;Lee, Wen-Chien;Lee, Kelvin H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.240-245
    • /
    • 2003
  • The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650$^{\circ}C$ to obtain enclosed channels. A polymer has been successfully polymerized in situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based on in situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

Separation of Colloidal Particles by Osmotic Sink Field Flow Fractionation Using UF Hollow Fiber Membranes

  • Shin, Se-Jong;Min, Byoung-Ryul;Park, Jin-Won;Ahh, Ik-Sung;Lee, Kang-Taek;Lee, Jae-Hoon
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • Unlike existent field flow fractionation, new method, osmotic sink field flow fractionation is introduced and used ultrafiltration hollow fiber membranes as separation channel. This hollow fiber osmotic sink field flow fractionation is called HF-OSFFF. A theory that describes the retention, relaxation, resolution, plate number for the system, has been developed and experimentally verified by separation model of po1ystyrene latex beads. At external field, it is measured that radial flow rates change according to various concentrations of PEG solutions. Concentration of PEG solution vs. radial flow rate is a linear relation. For diameter distribution of unknown polymer sample, HF-OSFFF compared with the commercial capillary hydrodynamic flow fractionation (CHDF).

  • PDF

A study for PP resin High magnification MCPs Extrusion foaming (MCPs 압출 공법을 이용한 PP 수지의 고배율 압출 발포 연구)

  • Hyun C.H.;Cha S.W.;Kim H.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1046-1050
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. There Is much development from injection molding pans but Extrusion parts is slow. This research is MCPs Extrusion parts, It is basis experiment for Process to make beads that is basis raw material of Package used most by shock mitigative of industry.

  • PDF

Preparation of Poly(butyl methacrylate) Composite Beads containing Carbon Black by Suspension Polymerization (현탁중합법에 의한 카본블랙을 함유하는 폴리뷰틸메타크릴레이트 복합체 입자의 합성)

  • Moon, Ji-Yeon;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • Suspension polymerization was carried out to synthesize poly(butyl methacrylate) (PBMA) composite particles containing carbon black. Water was selected as a reaction medium, hydrophobic silica as a stabilizer and azobisisobutyronitrile as an initiator. Concentration of stabilizer was varied from 0.67 to 2.55 weight% with respect to the water, and that of initiator was varied from 0.25 to 3.00 weight% with respect to the butyl methacrylate (BMA) monomer. All polymerization reactions were conducted at 75$^{\circ}C$. It is found that stabilizer concentration has no impact on reaction kinetics, while an increase in initiator concentration enhances polymerization reaction rate. Increase of carbon black concentration from 1 to 3 to 5 wt% into PBMA displayed progressive decrease in reaction conversion. The particle diameter of PBMA composite particles containing carbon black was found to be between 5 and 30 ${\mu}m$. Glass transition was determined to range from 23.8 to 24.7$^{\circ}C$, irrespective of variation in the concentration of stabilizer, initiator or carbon black.

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

Formulation and Preparation of Sustained Release Pellet for Alfuzosin HCI Using Fluid-bed coater (유동층 코팅기를 이용한 염산알푸조신의 서방형 과립 설계 및 제조)

  • Na, Jin-Sang;Yoon, Yang-No;Seo, Hui;Jeong, Sang-Young;Park, Eun-Seok;Hwan, Sung-Joo;Shin, Byung-Cheol;Kim, Sung-Hoon;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • Alfuzosin, an Alphal-adrenoceptor antagonist is used for the treatment of patients with voiding and in a lesser extent storage lower urinary tract symptoms (LUTS) associated to benign prostatic hyperplasia (BPH). The objective of this study was to formulate sustained release alfuzosin HCl granules and assess their formulation variables. The $Eudragit^{(R)}$ as a polymer, sustained release membrane, and dibutyl sebacate (DBS) as a plasticizer were used. Multi-coated alfuzosin HCl delivery systems composed of sugar sphere, various excipients, $Eudragit^{(R)}$ and HPMC (hydroxy propyl methyl cellulose), Cellulose Acetate were prepared by fluid-bed coater. Membrane layer were used $Eudragit^{(R)}$ RS PO and NE 30D. And the alfuzosin HCl coated beads were coated immediate release drug layer for initial burst. Its dissolution test was carried out compared to conventional products ($XATRAL^{(R)}$ XL). The release rate of drug from coated beads was higher than that from $XATRAL^{(R)}$ XL in pH 6.8.

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

Vertically-Aligned Nanowire Arrays for Cellular Interfaces

  • Kim, Seong-Min;Lee, Se-Yeong;Gang, Dong-Hui;Yun, Myeong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.2-90.2
    • /
    • 2013
  • Vertically-aligned silicon nanostructure arrays (SNAs) have been drawing much attention due to their useful electrical properties, large surface area, and quantum confinement effect. SNAs are typically fabricated by chemical vapor deposition, reactive ion etching, or wet chemical etching. Recently, metal-assisted chemical etching process, which is relatively simple and cost-effective, in combination with nanosphere lithography was recently demonstrated for vertical SNA fabrication with controlled SNA diameters, lengths, and densities. However, this method exhibits limitations in terms of large-area preparation of unperiodic nanostructures and SNA geometry tuning independent of inter-structure separation. In this work, we introduced the layerby- layer deposition of polyelectrolytes for holding uniformly dispersed polystyrene beads as mask and demonstrated the fabrication of well-dispersed vertical SNAs with controlled geometric parameters on large substrates. Additionally, we present a new means of building in vitro neuronal networks using vertical nanowire arrays. Primary culture of rat hippocampal neurons were deposited on the bare and conducting polymer-coated SNAs and maintained for several weeks while their viability remains for several weeks. Combined with the recently-developed transfection method via nanowire internalization, the patterned vertical nanostructures will contribute to understanding how synaptic connectivity and site-specific perturbation will affect global neuronal network function in an extant in vitro neuronal circuit.

  • PDF