• Title/Summary/Keyword: Polymer Composite

Search Result 2,121, Processing Time 0.032 seconds

Dielectric and piezoelectric properties of PZT-polymer 3-3 type composite for ultrasonic transducer applications (초음파 트랜스듀서용 PZT-고분자 3-3형 복합압전체의 유전 및 압전특성)

  • 박정학;이수호;최헌일;사공건;배진호
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 1996
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT ceramics were made from a mixture of PZT and polyvinylalcohol(PVA) by BURPS(Bumout Plastic Sphere) technique. The 3-3 type composites were fabricated by impregnating an sintered porous PZT ceramics with various polymer matrices. The relative permittivity of 3-3 type composite specimens was shown 860-1,100 smaller than that of solid PZT ceramics(2,100), and the dissipation factors of composite specimens were about 0.02 to 0.03. The piezoelectric coefficient d$_{33}$ of composite specimens(285-328*10$^{12}$ C/N) was comparable with that of single phase PZT specimens(364*10$^{-12}$ C/N). The thickness mode coupling factor k$_{t}$(O.5-0.6) of composite specimens was comparable with that of single phase PZT specimens(k$_{t}$-0.7), and the mechanical quality factor of composite specimens was smaller than 10, and thus these 3-3 type composite specimens would be believed as a good candidates for broad band transducer applications.ons.

  • PDF

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

Evaluation of Piezoelectric Properties in Pb(Zr1Ti)O3-PVDF Composites for Thick Film Speaker Application (후막 스피커 응용을 위한 Pb(Zr1Ti)O3-PVDF 복합체의 압전 특성 평가)

  • Son Yong-Ho;Kim Sung-Jin;Kim Young-Min;Jeong Joon-Seok;Ryu Sung-Lim;Kweon Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.966-970
    • /
    • 2006
  • We reported on characteristics of the piezoelectric ceramic-polymer composite for the application of the thick-film speaker. The PVDF-PZT composites were fabricated to incorporate the advantages of both ceramic and polymer with various mixing ratios by 3-roll mill mixer. The composite solutions were coated by the conventional screen-printing method on ITO electrode coated PET (Polyethylene terephthalate) polymer film. After depositing the top-electrode of silver-paste, 4 kV/mm of DC field was applied at $120^{\circ}C$ for 30 min to poling the composite films. The value of $d_{33}$ (piezoelectric charge constant) was increased when the PZT weight percent was increased. The maximum value of the $d_{33}$ was 24 pC/N at 70 wt% PZT. But the $g{33}$ (piezoelectric voltage constant) showed the maximum value of $32mV{\cdot}m/N$ at 65 wt% of PZT powder. The SPL (sound pressure level) of the speaker fabricated with the 65:35 composite film was about 68 dB at 1 kHz.

Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montrnorillonite (Sodium Montrnorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성)

  • Jeong, Han-Mo;Kim, Byung-Chon;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.380-384
    • /
    • 2005
  • Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorilonite to get a fluorinated acrylic ionomer/sodium montmorillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium montmorillonite, causing reduced current and deformation.

Phase Separated Structure and Electro-optical Properties of the (Polymer/Liquid Crystal) Composite Films ((고분자/액정) 복합막의 상분리구조와 전기광학 특성)

  • Park, K.S.;Noh, C.H.;SaKong, D.S.;Nam, K.D.;Kajiyama, T.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.29-39
    • /
    • 1995
  • The phase separated structure and the electro-optical properties of the (polymer/liquid) crystal : LC) composite film strongly depended on the weight fraction of LC in it. The continuous LC phase was formed in a three-dimensional polymer network when the LC weight fraction was above 40wt%. The aggregation structure of the composite film could be controlled by controlling the solvent evaporation velocity during the film preparation process. The smaller LC domains or channels were formed in the case of the faster solvent evaporation velocity. The composite film exhibited reversible light scattering-light transmission switching upon electric field -OFF and -ON states, respectiverly. The light scattering properties of the composite film strongly depended on the spatial distortion of the nematic directors as well as the mismatch in refractive indices between matrix polymer and LC.

A Study on the Fluoro-polymer Composite Coatings for Protecting the Corrosion of Fossil-fuel Power Plants

  • Kang, Min Soo;Lee, Byung Seung;Chang, Hyun Young;Jin, Tae Eun;So, Il Soo
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2007
  • Several heavy duty coatings at an every kind industry facilities to various systems currently have been applied review to the many industry fields. Corrosion-protective characteristics in the case of novolac epoxy among them and unsaturated polyester have been applied most widely. epoxy and flake heavy duty coatings are applied for such reason in an every kind facilities(stack, FGD, cooler, chemical tank etc) of a fossil-fuel power plants Cases of the fossil-fuel power plants are exposed to more severe corrosion environment compared with other facilities and It is difficult to display the performance of long-term method at apply to be the partial. Our study shows fluoro-polymer composite coating method to overcome of the limit. The comparison did previous method and heavy duty coating about FGD plants most at a corrosion environment among fossil-fuel power plants. Additionally, other facilities examined different heavy duty method. The design mode of fluoro-polymer composite coating according to an every kind facilities show extensive methods that are characteristic revelation of film(top, middle and primer layer) composition of the paint, film thickness in accordance with a facilities corrosion and the corrosion protective effectiveness to come into being use fluoro-polymer composite with heavy duty paint(epoxy).

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments (구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구)

  • Kim, Ye Jin;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.