• Title/Summary/Keyword: Polyimide surface

Search Result 413, Processing Time 0.029 seconds

Ion Beam-based Surface Modification of Polyimide Films for Adhesion Improvement with Deposited Metal Layer

  • Cho, Hwang-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.335-339
    • /
    • 2010
  • In this study, the surface of polyimide (PI) films was modified using ion implantation to enhance its adhesion to a deposited copper (Cu) layer. The surfaces of the PI films were implanted with 150 keV $Xe^+$ ions at fluences varying from $1{\times}10^{14}$ to $1{\time}10^{16}ions\;cm^{-2}$. The Cu layers were then deposited on the implanted PI. The surface properties of the implanted PI film were investigated based on the contact angle measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, the adhesive strength between the deposited Cu layer and PI film was estimated through a scratch test using a nanoindenter. As a result, the surface environment of the PI film was changed by the ion implantation, which could have a significant effect on the adhesion between the deposited Cu layer and the PI.

Application of the Axiomatic Design Methodology to the Design of PBGA Package with Polyimide Coating Layer

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Dong, C. Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1572-1581
    • /
    • 2004
  • The purposes of the paper are to apply the axiomatic design methodology to the design of PBGA package with polyimide coating under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by stress analysis. The analysis model is a 256-pin perimeter Plastic Ball Grid Array (PBGA) package with the polyimide coating surrounding chip and above surface of BT-substrate. The polyimide coating is suggested to depress the maximum stresses occurred on the stress concentration positions. The axiomatic design methodology is proved to be useful to find the more reliable design conditions for PBGA package. Finally, the optimal values of design variables to depress the stress in the PBGA package are obtained.

Fabrication of 8 inch Polyimide-type Electrostatic Chuck (폴리이미드형 8인치 정전기척의 제조)

  • 조남인;박순규;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A polyimide-type electrostatic chuck (ESC) was fabricated for the application of holding 8-inch silicon wafers in the oxide etching equipment. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on top of thin coated copper substrates for the good electrical contacts, and the helium gas cooling technique was used for the temperature uniformity of the silicon wafers. The ESC was essentially working with an unipolar operation, which was easier to fabricate and operate compared to a bipolar operation. The chucking force of the ESC has been measured to be about 580 gf when the applied voltage was 1.5 kV, which was considered to be enough force to hold wafers during the dry etching processing. The employment of the ESC in etcher system could make 8% enhancement of the wafer processing yield.

  • PDF

Liquid crystal alignment on the inkjet printed polyimide by using new alignment method

  • Hwang, J.Y.;Wonderly, H.;Chien, L.C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.506-508
    • /
    • 2007
  • We studied the nematic liquid crystal (NLC) alignment capability with a new alignment method utilizing an inkjet printed polyimide (PI) layer. A good, uniform LC alignment was achieved by the good PI printing using a new alignment method. The pretilt angle generated on the printed PI layer using the alignment method was almost the same as that on printed PI layer using rubbing alignment method. In addition, the good electro-optical performances of the new aligned twisted nematic (TN) cell with printed PI surface was obtained

  • PDF

Electrical Conductivity Behavior of 6FDA-based Fluorinated Polyimide/PMMA-g-MWCNT Nanocomposite Film (6FDA를 포함한 불소계 폴리이미드와 PMMA가 그래프트된 카본나노튜브 나노복합필름의 전기 전도성 연구)

  • Yun, Sung-Jin;Im, Hyun-Gu;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • PMMA was grafted on MWCNT surface in order to prepare conducting film composed of 6FDAbased polyimide/MWCNT. The electrical conductivity of 6FDA-based polyimide/PMMA-g-MWCNT was investigated as a function of PMMA-g-MWCNT content. Dispersion of MWCNT in 6FDA-based polyimide composite film was better than the pristine MWCNT due to the interaction force between PMMA and 6FDA-based polyimide. Electrical conductivity was interpreted by percolation threshold theory. As a result, 6FDA-6FpDA/PMMA-g-MWCNT which have high critical exponents and low critical concentration showed better dispersion than polyimide composite material that contains DABA(diamino benzoic acid).

Modification of Polyimide Surface for Photo-Alignment in LCD (액정의 광배향을 위한 폴리이미드의 표면 변형)

  • Shin, Dong-Muyng;Song, Dong-Mee;Shon, Byoung-Choung;Kang, Dou-Yol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.47-53
    • /
    • 1998
  • The polyimide film surface was modified with KOH aqueous solutions or sulfuric acid. The film thickness was increased by about 10% through the modification of film surface. Hydrolysis of amide bonds and hydration of water induced the increase. The polarity of the film surface increased and identified by contact angle measurement. The depth and roughness of modified was increased. After treatment of surface with water, alkyl and 4-pentyloxyaniline were introduced on the film surface by complex formation between anionic species formed on the imide surface and ammonium ion. The newly introduced alkyl group was identified by FT-IR spectroscopy. Surface polarity reduced dramatically and the roughness was increased after introduction of ammonium salt.

Washing Effects on Generation of Pretilt Angle in NLC, 5CB, on a Polyimide Surface with Trifluoromethyl Moieties

  • Lee, Sang-Keuk;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.133-135
    • /
    • 2003
  • The washing effects on pretilt angle generation in a nematic liquid crystal (NLC), 4-n-pentyl-4’-cyanobiphenyl (5CB) on a rubbed polyimide (PI) surface with trifluoromethyl moiety have been successfully studied. The pretilt angle of 5CB is increased by the washing process on the rubbed PI surface. The surface tension on the rubbed PI surface increases with the rubbing strength RS and then saturated above RS=150 mm. The pretilt angle of 5CB for all washing processes on the rubbed PI surface decreases with the surface tension. We have found that the pretilt angle of 5CB on the rubbed PI surface may be attributed van der walls (VDW) dispersion interaction between the LC molecules and the polymer surfaces having trifluoromethyl moieties.

  • PDF

Effect of Plasma Treatment Times on the Adhesion of Cu/Ni Thin Film to Polyimide (폴리이미드와 Cu/Ni층과의 계면결합력에 미치는 플라즈마 처리 시간 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Jeon, Woo-Yong;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.657-663
    • /
    • 2011
  • This study represents the results of the peel strength and surface morphology according to the preprocessing times of polyimide (PI) in a Cu/Ni/PI structure flexible copper clad laminate production process based on the polyimide. Field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to analyze the surface morphology, crystal structure, and interface binding structure of sputtered Ni, Cu, and electrodeposited copper foil layers. The surface roughness of Ni, Cu deposition layers and the crystal structure of electrodeposited Cu layers were varied according to the preprocessing times. In the RF plasma times that were varied by 100-600 seconds in a preprocessing process, the preprocessing applied by about 300-400 seconds showed a homogeneous surface morphology in the metal layers and that also represented high peel strength for the polyimide. Considering the effect of peel strength on plastic deformation, preprocessing times can reasonably be at about 400 seconds.

Effect of Additional Electrical Current on Adhesion Strength between Copper and Polyimide Films (인가 전류가 구리 도금 피막과 폴리이미드 필름의 접합력에 미치는 영향)

  • Lee, Jang-Hun;Han, Yoonsung;Lee, Ho-Nyun;Hur, Jin-Young;Lee, Hong Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • The effect of the additionally applied electrical current on the adhesion strength between electroless Cu and polyimide films was investigated. Peel tests were performed after applying electrical current within the range from 0.1 to 100 mA for the duration from 1 to 30 minutes. Sample with more than 1 mA of additional electrical current for 1 minute showed higher adhesion strength than that without additional electrical current. However, samples with 10 mA of additional electrical current for more than 10 miniutes showed the degradation of adhesion strength. Ra and RMS values of the peeled polyimide surface were proportional to the adhesion strength though there were no significant changes in the morphology of the peeled surfaces with varied amount and time-length of additional electrical current. Applying electrical current could increase the density of chemical bonding, which results in increase of the adhesion strength between copper and polyimide. However, in the case of applying additional electrical current for excessive amount or time, the degradation of the adhesion strength owing to the formation of copper oxide at the interface could occur.

Electro-optical performance of TN-LCD wish oblique UV light irradiation on polyimide surface (경사진 자외선 조사를 이용한 TN-LCD의 전기광학 특성)

  • 서대식;박두석;한정민;황율연;박태규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.113-116
    • /
    • 1998
  • In this paper, we studied the electro-optical(EO) performance of photo-aligned twisted nematic(TN)-liquid crystal display(LCD) with oblique non-polarized ultraviolet(UV) light irradiation on polyimide(Pl) surface. We observed that the voltage-transmittance and response time characteristics of photo-aligned TN-LCD is almost same compared to conventional TN-LCD. Also, we observed that the voltage-holding-ratio(VHR) of photo-aligned TN-LCD is almost same compared to conventional TN-LCD.

  • PDF