• Title/Summary/Keyword: Polyimide surface

Search Result 413, Processing Time 0.028 seconds

Effects of Thermal Imidization and Annealing on Liquid Crystal Alignment ever Rubbed Polyimide Layers: Change in the Pretilt Angle

  • Paek, Sang-Hyon
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.303-312
    • /
    • 2001
  • The fabrication of liquid crystal display (LCD) panels involves several thermal processes such as imidization of the alignment layer (AL) and annealing of the rubbed polyimide AL. The nature of these processes on the LC alignment, especially on the pretilt angle (Θ$\_$p/) has been systematically studied, employing various types of polyimide structures. The imidization effect depends on the nature of polyimid precursors; Θ$\^$p/ increases with the degree of the imidization for the main-chain type of ALs, due to the decrease in the surface polarity, but this relation is not applicable to the alkylated ones in which the steric effect at the AL surface by the aliphatic side chains is dominant. Annealing of the rubbed polyimide AL deteriorates its rubbing-induced molecular orientation and subsequently the overlying LC alignment, resulting in the decrease in Θ$\_$p/. Especially, annealing of the LC cell affects the LC-AL interaction as well as the AL orientation and thus its effect on LC alignment depends sensitively on the nature of LC-polyimide interface; aromatic moiety in the polyimide structure gives better thermal stability of LC alignment while fluorinated polyimide ALs induce the less stable alignment.

  • PDF

Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion of Electroless-plated Ni on Polyimide (고온다습처리 조건이 무전해 니켈 도금 박막과 폴리이미드 사이의 계면 접착력에 미치는 영향)

  • Min, Kyoung-Jin;Jeong, Myeong-Hyeok;Lee, Kyu-Hwan;Jeong, Yong-Soo;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.675-680
    • /
    • 2009
  • Effects of $85^{\circ}C/85%$ Temperature/Humidity (T/H) treatment conditions on the peel strength of an electroless-plated Ni/polyimide system were investigated from a $180^{\circ}$ peel test. Peel strength between electroless-plated Ni and polyimide monotonically decreased from $37.4{\pm}5.6g/mm$ to $22.0{\pm}2.7g/mm$ for variation of T/H treatment time from 0 to 1000 hrs. The interfacial bonding mechanism between Ni and polyimide appears to be closely related to Ni-O bonding at the Ni/polyimide interface. The decrease in peel strength due to T/H treatment appears to be related to polyimide degradation due to moisture penetration through the interface and the bulk polyimide itself.

Polyimide Surface Modification using UV Laser (UV 레이저를 이용한 폴리이미드 표면 개질에 관한 연구)

  • Oh, Jae-Yong;Lee, Jung-Han;Park, Duk-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • In this paper, polyimide (PI) surface was modified by UV Laser with a low laser fluence and investigated changes of surface geometry and chemical characteristics by SEM (scanning electron microscope), X-ray diffraction (XRD), XPS (x-ray photoelectron spectroscopy) and the measurements of contact angle of water. PI surface was peeled off and modified with microstructure fabrications by photochemical ablation over the laser fluence of 50 mJ/cm2. As laser fluence increased, delamination of PI surface was occurred largely and strongly. In chemical characteristics, the O/C and N/C atomic ratios increased and contact angle decreased from $80^{\circ}$ to $40^{\circ}$.

  • PDF

Pretilt Angle Generation and EO Performance in MLC with Polarized UV Light Irradiation Polyimide surface (폴리이미드막 표면에 직선 편광된 UV광 조사에 의한 프리틸트각 발생과 전기광학특성)

  • 서대식;이정호;이창훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.878-884
    • /
    • 1998
  • We have investigated that the monodomain alignment of nematic liquid crystal (NLC) is obtained with polarized ultraviolet(PUV) light irradiation on polyimide (PI) surface. The LC alignment capability increases with increasing the UV light irradiation time. The polarized UV light irradiation on oblique angle of 60。 irradiated on PI surface rotated by 90。 at 10 min. after being normally irradiated on PI surface at 30 min., the generated pretilt angle of NLC is about 2.5。. The pretilt angle of NLC is attributed to the interaction between the LC molecules and the asymmetric triangular structure of polymer surface due to photo-depolymerization of polymer with the oblique UV light on PI surface. The voltage -transmittance and response time characteristics of photo-aligned twisted nematic (TN)-LCD with UV light irradiation time 60 min. were almost same in comparison with the rubbing-treated TN-LCD.

  • PDF

Generation of High Pretilt Angle for Nematic Liquid Crystal on Blended Polyimide Surfaces Containing Fluorine Moiety (Fluorine 계열의 폴리머를 함유한 복합 폴리이미드 표면에서의 네마틱 액정의 고 프리틸트 발생)

  • Hwang, Jeoung-Yeon;Lee, Kyung-Jun;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.949-952
    • /
    • 2002
  • The mechanisms of pretilt angle generation for a nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) surface containing trifluoromethyl moiety was studied. High LC pretilt angle on the blended polymer surface with F3 was measured and the pretilt angle increased with rubbing strength. However, the low LC pretilt angle on the blended polymer surface with F1 and F2 was measured. The high LC pretilt angle generated is attributable to trifluoromethyl moiety in backbone structure on the blended PI surface. Therefore, the high pretilt angle of NLC can be achieved by using the blended polymer surface.

  • PDF

Mechanisms of Pretilt Angle Generation for Nematic Liquid Crystal on Blended Polyimide Surfaces Containing Fluorine Moiety (Fluorine 계열의 폴리머를 함유한 복합 폴리이미드 표면에서의 네마틱 액정의 프리틸트 발생의 메카니즘)

  • 황정연;이상극;서대식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.981-984
    • /
    • 2002
  • The mechanisms of pretilt angle generation for a nematic liquid crystal (NLC) with negative dielectric anisotropy on the blended polyimide (PI) surface containing trifluoromethyl moiety were studied. High LC pretilt angle on the blended polymer surface with F3 was measured and the pretilt angle increased with rubbing strength. However, the low LC pretilt angle on the blended polymer surface with F1 and F2 was measured. The high LC pretilt angle generated is attributable to trifluoromethyl moiety in backbone structure on the blended PI surface. Therefore, the high pretilt angle of NLC can be achieved by using the blended polymer surface.

Response Characteristics of Fast TN Cell on a Polyimide Surface (폴리이미드 표면에서의 고속 TN 셀의 응답 특성)

  • Jeon, Yong-Je;Hwang, Jeong-Yeon;Jeong, Youn-Hak;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.514-517
    • /
    • 2002
  • We investigated response characteristics of twisted nematic (TN) cell with different nematic liquid crystals (NLCs) and cell gap d on a rubbed polyimide (PI) surface. High transmittance and fast response time of the TN cell on the rubbed PI surface were achieved by using high birefringence (${\Delta}n$) and low cell gap d. The response time of TN cell on the rubbed PI surface was measured 5.1 ms. The transmittance and response time of the TN cell on the rubbed PI surface decreased with decreasing ${\Delta}nd$.

  • PDF

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF