• Title/Summary/Keyword: Polyimide Film

Search Result 408, Processing Time 0.03 seconds

Continuous Coating Process Development for PEFC Membrane Electrode Assembly (고분자 연료전지용 MEA 연속 코팅공정 개발)

  • Park, Seok-Hee;Yoon, Young-Gi;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.110-112
    • /
    • 2006
  • Membrane electrode assembly (MEA) for polymer electrolyte fuel cell (PEFC) are commonly prepared in the research laboratory by spraying, screen-printing and brushing catalyst slurry onto membrane or other support material like carbon paper or polyimide film in a batch style. These hand applications of the catalyst slurry are painstaking process with respect to precision of catalyst loading and reproducibility. It has been generally mentioned that the adoption of continuous process is very helpful to develop the reliable product. In the present work, we report the results of using continuous type coater with doctor-blade to coat catalyst slurry for preparing the MEA catalyst layers In a faster and highly reproducible fashion. We show that while expectedly faster than batch style, the machine coater requires the use of slurry of appropriate composition and a properly selected transfer decal material in order to achieve superior MEA plat lnw loading reproducibility. To make highly viscous catalyst slurry that is imperative for using coater, we use 40wt.% Nafion solution and minimize the content of organic solvent. And the choice of proper high surface area catalyst is important in the viewpoint of making well-dispersed slurry. After catalyst coating onto the support material, we transferred the catalyst layer to both sides of Nafion membrane by hot-pressing In this case, the degree of transfer was Influenced by hot-pressing condition including temperature, pressure, and time. To compare the transferring ability, we compared so many films and detaching papers. And among the support, polyethylene terephthalate(PET) film shows the prominent result.

  • PDF

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Self-Organized Nano Structure in Co-22% Cr Alloy Thin Films with Substrate Temperatures (기판온도에 따른 Co-22%Cr 합금박막의자가정렬형 나노구조)

  • 송오성;이영민
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.531-536
    • /
    • 2001
  • Co-22 %Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure (SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. The periodic fine Co-enriched phase and Cr-enriched phase is the plate shape of 80 (equation omitted)-wide and 1000 (equation omitted)-long. Cr-enriched phases are located at the center of grains. We prepared 5000 (equation omitted) -thick Co-22 %Cr films on polyimide substrate with varying substrate temperature of $ 30^{\circ}C$, $ 150^{\circ}C$ ,200 $^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. A transmission electron microscope equipped with energy dispersive X-ray analyzer is employed to observe the microstructure of each samples after Co-enri-ched phase are etched selectively. The self organized nano structure of Co-enriched and Cr-enriched lamellar is observed above the substrate temperture of $150^{\circ}C$. No compositional change is observed with substrate temperature. The compositional phase separation in self organized structure becomes clear as the substrate temperature increases. Our results implies that the self organized nano structure in Co-22 %Cr film is ideal for ultra high density recording media by recording selectively on Co-enri-ohed phase.

  • PDF

A Study on the Correlation between Curing Temperature and Thermal Deformation of a Moving Web in Roll-to-Roll Printed Electronics (롤투롤 인쇄 전자 시스템에서 건조 온도와 유연기판의 열변형간 상관관계에 대한 연구)

  • Lee, Jongsu;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.653-658
    • /
    • 2014
  • Roll-to-Roll printing process has become a great issue as a breakthrough for low cost and mass production of electronic devices such as organic thin film transistor, and etc. To print the electronic devices, multi-layer printing is essential, and high precision register control is required for this process. Unlike stop-and-repeat printing process, it is impossible to control the register in a static state since the roll-to-roll process is a continuous system. Therefore, the behavior of web such as polyethylene terephthalate (PET) and polyimide (PI) by the tensile and thermal stress generated in the roll-to-roll process as well as motor control of driven rolls has to be considered for a high precision register control. In this study, the correlation between curing temperature and thermal deformation of PET web is analyzed. Finally, it is verified experimentally that the temperature disturbance generates the more serious register error under the higher curing temperature.

A study on the Thermally stimulated current(TSC) of the Langmuir-Blodgett(LB) films (Langmuir-Blodgett(LB) 박막의 열자격 전류 연구)

  • 이호식;이원재;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.273-276
    • /
    • 1997
  • This paper describes the thermally stimulated current (TSC) measurements of arachidic acid and polyamic acid alkylamine salt(PAAS) LB film, which is a precursor of polyimide(PI). The measurements were performed from room temperature to about 25$0^{\circ}C$ and the temperature was increased at a rate of 0.02 K/s linearly. It shows that peaks of TSC are observed at about 8$0^{\circ}C$ in the arachidic acid and about 8$0^{\circ}C$, 16$0^{\circ}C$ in the PAAS LB films. Results of these measurements indicate that one peak at 8$0^{\circ}C$ is resulted from alkyl group; the other peak at 16$0^{\circ}C$ is due to alkyl and C-O group of PAAS. Additional large peak at about 16$0^{\circ}C$ is due to dipole moments in the PAAS films. The DSC of PAAS, arachidic acid and octadesylamine are measured. Thermal imidization was performed at 30$0^{\circ}C$ for 1 hour by our pre study.

  • PDF

Electrical Properties and Preparation of 6FDA/4-4'DDE Polyimide Thin Films by Vapor Deposition Polymerization Method (진공증착중합법을 이용한 6FDA/4-4'DDE 폴리이미드 박막의 제조와 전기적 특성)

  • Hwang, S.Y.;Lee, B.J.;Kim, H.G.;Kim, Y.B.;Park, K.S.;Lim, H.C.;Kang, D.H.;Park, K.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1487-1489
    • /
    • 1998
  • In this paper, thin films of PI were fabricated VDPM of dry processes which are easy to control the film's thickness and hard to pollute due to volatile solvents. From FT-lR, PAA thin films fabricated by VDP were changed to PI thin films by thermal curing. From SEM, AFM and Ellipsometer experimental, as the higher curing temperatures the films thickness decreases and reflectance increases. Therefore, Pl could be fabricated stable by increasing curing temperature. The relative permitivity and dissipation loss factor were 3.7 and 0.008. Also, the resistivity was about $1.05{\times}10^{15}{\Omega}cm$ at $30^{\circ}C$.

  • PDF

Breakdown Characteristics and Survival Probability of Turn-to- Turn Models for a HTS Transformer

  • Cheon H.G.;Baek S.M.;Seong K.C.;Kim H.J.;Kim S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.21-26
    • /
    • 2005
  • Breakdown characteristics and survival probability of turn-to-turn models were investigated under ac and impulse voltage at 77K. For experiments, two test electrode models were fabricated: One is point contact model and the other is surface contact model. Both are made of copper wrapped by O.025mm thick polyimide film(Kapton). The experimental results were analyzed statistically using Weibull distribution in order to examine the wrapping number effects on voltage-time characteristics under ac voltage as well as under impulse voltage in LN$_{2}$. Also survival analysis were performed according to the Kaplan-Meier method. The breakdown voltages of surface contact model are lower than that of point contact model, because the contact area of surface contact model is wider than that of point contact model. Besides, the shape parameter of point contact model is a little bit larger than that of surface contact model. The time to breakdown t$_{50}$ is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

A study on the Thermally stimulated current(TSC) of the Langmuir-Blodgctt(LB) films (Langmuir-Blodgett(LB) 박막의 열자격 전류 연구)

  • ;;;;M. Iwamoto
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.199-202
    • /
    • 1996
  • This paper describes the thermally stimulated current (TSC) measurements of arachidic acid and polyamic acid alkylamine salt(PAAS) LB film, which is a precursor of polyimide(PI). The measurements were performed from room temperature to about 25$0^{\circ}C$ and the temperature was increased at a rate of 0.02 K/s linearly. It shows that peaks of TSC are observed at about 8$0^{\circ}C$ in the arachidic acid and about 8$0^{\circ}C$, 16$0^{\circ}C$ in the PAAS LB films. Results of these measurements indicate that one peak at 8$0^{\circ}C$ is resulted from alkyl group; the other peak at 16$0^{\circ}C$ is due to alkyl and C-O group of PAAS. Additional large peak at about 16$0^{\circ}C$ is due to dipole moments in the PAAS films. The DSC and TGA of PAAS, arachidic acid and octadesylamine are measured. Thermal imidization was performed at 30$0^{\circ}C$ far 1 hour by our pre study

  • PDF

Property and Surface Morphology of Copper Foil on the Current Density (구리 박막의 표면형상과 물성에 대한 전류밀도 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Jung, Kwang-Hee;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.555-558
    • /
    • 2010
  • This study examined the effect of current density on the surface morphology and physical properties of copper plated on a polyimide (PI) film. The morphology, crystal structure, and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity was controlled using current density. Large particles were observed on the surface of the copper layer electroplated onto a current density of 25 mA/$cm^2$. However, a uniform surface and lower resistivity were obtained with a current density of 10 mA/$cm^2$. One of the important properties of FCCL is the flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density rather than a high current density. Moreover, a reasonable current density is 20 mA/$cm^2$ considering the productivity and mechanical properties of copper foil.

Sn58Bi Solder Interconnection for Low-Temperature Flex-on-Flex Bonding

  • Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung;Bae, Hyun-Cheol;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1163-1171
    • /
    • 2016
  • Integration technologies involving flexible substrates are receiving significant attention owing the appearance of new products regarding wearable and Internet of Things technologies. There has been a continuous demand from the industry for a reliable bonding method applicable to a low-temperature process and flexible substrates. Up to now, however, an anisotropic conductive film (ACF) has been predominantly used in applications involving flexible substrates; we therefore suggest low-temperature lead-free soldering and bonding processes as a possible alternative for flex-on-flex applications. Test vehicles were designed on polyimide flexible substrates (FPCBs) to measure the contact resistances. Solder bumping was carried out using a solder-on-pad process with Solder Bump Maker based on Sn58Bi for low-temperature applications. In addition, thermocompression bonding of FPCBs was successfully demonstrated within the temperature of $150^{\circ}C$ using a newly developed fluxing underfill material with fluxing and curing capabilities at low temperature. The same FPCBs were bonded using commercially available ACFs in order to compare the joint properties with those of a joint formed using solder and an underfill. Both of the interconnections formed with Sn58Bi and ACF were examined through a contact resistance measurement, an $85^{\circ}C$ and 85% reliability test, and an SEM cross-sectional analysis.