• Title/Summary/Keyword: Polyimide(PI)

Search Result 368, Processing Time 0.027 seconds

Molecular Orientation of Evaporated Pentacene Film on Polyimide Alignment Layer (폴리이미드 배향막에 증착된 Pentacene 분자의 배향 연구)

  • Kim Beom-Kyung;Kim Do-Hoi;Chung Jae-Sun;Kim Young-Ju;Seo In-Seon;Kwon Soon-Ki;Song Ki-Gook
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.362-366
    • /
    • 2006
  • It was found by polarized FTIR spectroscopic studies that pentacene molecules are arranged with their molecular axes perpendicular to the substrate surface when pentacene films are deposited on a polyimide alignment layer. The ring plane in a pentacene molecule is arranged parallel to the rubbing direction of the polyimide alignment film while no specific arrangement of vertically deposited pentacene molecules was found for the film without rubbing. The pentacene band at $1296cm^{-1}$ which has a transition dipole moment parallel to the ring plane is much stronger in a polarized IR spectrum of parallel to the rubbing direction, whereas the band at $908cm^{-1}$ whose transition dipole align normal to the ring plane shows much stronger intensity in a spectrum of perpendicular to the rubbing direction. These findings indicate that orientation of polyimide chains affects the arrangement of pentacene molecules when they are deposited on a polyimide alignment film.

Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound (이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성)

  • Kang, Hyung Dae;Kim, Hwa Jin;Lee, Jae Heung;Suh, Dong Hack;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Polyimide (PI) surface modification was carried out by ion-beam treatment and silane-imidazole coupling agent to improve the adhesion between polyimide film and copper. Silane-imidazole coupling agent contains imidazole functional groups for the formation of a complex with copper metal through a coordination bonding and methoxy silane groups for the formation of siloxane polymers. The PI film surface was first treated by argon (Ar)/oxygen ($O_2$) ion-beam, followed by dipping it into a modified silane-imidazole coupling agent solution. The results of X-ray photoelectron spectroscopy (XPS) spectra revealed that the $Ar/O_2$ plasma treatment formed oxygen functional groups such as hydroxyl and carbonyl groups on the polyimide film surface and confirmed that the PI surface was modified by a coupling reaction with imidazole-silane coupling agent. Adhesion between copper and the treated PI film by ion-beam and coupling agent was superior to that with untreated PI film. In addition, adhesion of PI film treated by an $Ar/O_2$ plasma to copper was better than that of PI film treated by a coupling agent. The peeled-off layers from the copper-PI film joint were completely different in chemical composition each other. The layer of PI film side showed similar C1s, N1s, O1s spectra to the original Upilex-S and no Si and Cu atoms appeared. On the other hand the layer of copper side showed different C1s and N1s spectra from the original PI film and many Si and Cu atoms appeared. This indicates that the failure occurs at an interface between the imidazole-silane and PI film layers rather than within the PI layers.

  • PDF

Synthesis and Characterization of Colorless Polyimide Nanocomposite Films Containing Pendant Trifluoromethyl Groups

  • Jin, Hyo-Seong;Chang, Jin-Hae;Kim, Jeong-Cheol
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.503-509
    • /
    • 2008
  • A series of colorless polyimide (PI) nanocomposite films were synthesized from 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFDB) with various organoclay contents by solution intercalation polymerization to poly(amic acid)s, followed by thermal imidization. The variation with the organoclay content of the thermomechanical properties, morphology, and optical transparency of the hybrids was examined at organoclay loadings ranging from 0 to 1.0 wt%. The hybrid films showed high optical transparency and almost no color, with cut-off wavelengths ranging from 352 and 356 nm and very low $b^*$ values of 1.19-1.77. The hybrid PI films showed good thermal properties with a glass transition temperature of $280-287^{\circ}C$. Most films did not show any significant thermal decomposition below $490^{\circ}C$. The addition of only a small amount of organoclay was sufficient to improve the tensile properties of the PI films with maximum enhancement being observed at 0.25 wt% organoclay. Moreover, these PI hybrids also had low coefficients of thermal expansion (CTE).

Chemical Structural Effects of Polyimides on the Alignment and Electro-optical Properties of Liquid Crystal Cells

  • Paek, Sang-Hyon;Wonseok Dong
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2004
  • The nature of the nematic liquid crystal (LC) alignment induced by the rubbed polyimide (PI) alignment layers (ALs) and the electro-optical (EO) properties of the LC cells are expected to depend on the chemical and physical features of the PI. By employing five pyromellitic dianhydride (PMDA)-type PIs having different functionalities, we have studied the effects of the PI's structure and chemistry on the alignment characteristics and the cell's EO properties. Increasing the flexibility of the PI increases the pretilt angle and tends to improve the alignment stability. On the other hand, the rigid, fluorinated PI displays poor stability for LCs and induces a less stable/uniform LC alignment and, subsequently, a small pre tilt angle. It also transpired that fluorination of the PI deteriorated the voltage-transmittance characteristics and the voltage holding ratio; increasing the flexibility of the PI structure improves these EO properties. The finding that the qualitative trends for the PI's functionalities are similar for both the alignment and EO properties suggests that the EO properties are closely related to the alignment characteristics, which are determined by short-range interactions between LC and PI molecules.

A Research Trend on High Density Polyethylene Electrical Strength (폴리이미드 박막의 공간전하현상에 관한 연구 동향)

  • Choi, Keun-Ho;Oh, Chang-Keun;Shin, Hyun-Man;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1984-1985
    • /
    • 2007
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries (리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더)

  • Song, Danoh;Lee, Seung Hyun;Kim, Kyuman;Ryou, Myung-Hyun;Park, Won Ho;Lee, Yong Min
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.674-680
    • /
    • 2015
  • A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight = ~10,945), the coating slurry was then prepared and Si anode was fabricated. For the control system, Si anode based on polyvinylidene fluoride (PVDF, molecular weight = ~350,000) having the same constituent ratio was prepared. During precycling, PI polymeric binder revealed much improved discharge capacity ($2,167mAh\;g^{-1}$) compared to that of using PVDF polymeric binder ($1,740mAh\;g^{-1}$), while the Coulombic efficiency of two systems were similar. PI polymeric binder improved the cycle retention ability during cycles compared to that of using PVDF, which is attributed to an improved adhesion property inside Si anode diminishing the dimensional stress during Si volume changes. The adhesion property of each polymeric binder in Si anode was confirmed by surface and interfacial cutting analysis system (SAICAS) (Si anode based on PI polymeric binder = $0.217kN\;m^{-1}$ and Si anode based on PVDF polymeric binder = $0.185kN\;m^{-1}$).

Ultrashort pulse laser induced PI film scribing (극초단파 레이저를 이용한 PI 필름 가공 기술개발)

  • Kim, Tae-Dong;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.307-311
    • /
    • 2017
  • Ultra short pulse laser processing with the PI (polyimide) substrate is conducted to increase flexibility and radius of curvatures. A femtosecond laser is used to perform micro machining by minimizing the heat effect in PI substrate. The laser processing according to the parameters, such as fabricated line width, depth, laser power, distance between lines, is carried out to understand the characteristics of fabricated lines. A bending test is carried out to evaluate bending shapes and the radius of curvature after bending and spreading it 1000 times. The results demonstrates that the radius of curvature decreases in deepen lines and increases with the augment of the number of the fabricated lines, and distance between lines.

Effect of conjugation of mesogenic core of nematic liquid crystals for polar anchoring strength on rubbed polyimide surfaces (극각 방향의 결합강도에 관한 네마틱 액정의 분자구조 변화의 효과)

  • 서대식
    • Electrical & Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.265-269
    • /
    • 1996
  • We have studied the effect of the mesogenic core of nematic liquid crystals (NLCs) for polar (out-of-plane tilt) anchoring strength and surface order parameter on rubbed polyimide (PI) surfaces. The order of polar anchoring strength for NLCs on rubbed PI surfaces is 5CB > PCH5 > CCH5. From the above results, we suggest that the polar anchoring strength depends on the polarizability of the NLCs. The surface order parameter for NLCs is 5CB > PCH5 > CCH5 on rubbed PI surfaces. We conclude that the polar anchoring strength is strongly related to the surface order parameter on rubbed PI surfaces.

  • PDF

A Study on Fast Response Time for Twisted Nematic Liquid Crystal Display

  • Lee, Kyung-Jun;Jeon, Yong-Je;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Jeon, Youn-Hak;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.121-123
    • /
    • 2002
  • Fast response characteristics of twisted nematic liquid crystal display (TN-LCD) cell with different nematic liquid crystals (NLCs) and cell gap on a rubbed polyimide (PI) surface were studied. High transmittance and fast response time of the TN-LCD on the rubbed PI surface were achieved by using high birefringence ($\Delta$ n) and low cell gap. It is considered that the transmittance and response time of the TN-LCD on the rubbed PI surface decreased as $\Delta$ nd decrease.

  • PDF

Liquid Crystal Aligning Capabilities on a New Photo-Crosslinkable Polyimide Based Polymer (새로운 광중합 가능한 폴리이미드계 몰리머을 이용한 액정 배향 특성)

  • 황정연;서대식;이상렬;김재형;한은주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.430-434
    • /
    • 2001
  • We synthesized a new photo-crosslinkable polymer (polyimide (PI)-chalcone-biphenyl (BP)) and liquid crystal (LC) aligning capabilities for nematic (N) LC with obliquely polarized UV exposure on a photo-crosslinkable polymer were studied. The high pretilt angle in NLC was obtained by polarized UV exposure on a PI-Chal-BP surface for 3 min. The high pretilt angle generated in NLC is attributed to the biphenyl moieties and the photo-dimerized chalclone group of a photopolymer. Also, good thermal stability of a PI-Chal-BP were obtained by thermogravimetric analysis (TGA) measurement until 450$^{\circ}C$. Finally, good voltage-transmittance curves and response time were observed by UV exposure on a PI-Chal-BP surface for 3min.

  • PDF