• Title/Summary/Keyword: Polyetylene fiber

Search Result 2, Processing Time 0.013 seconds

Tensile Behavior of Polyetylene Fiber-Reinforced Cementless Composite (폴리에틸렌섬유 보강 무시멘트 복합재료의 인장 거동)

  • Lee, Bang Yeon;Choi, Jeong-Il;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5600-5607
    • /
    • 2015
  • This study investigated experimentally the tensile behavior of polyetylene fiber-reinforced cementless composite. Four types of polyetylene fiber-reinforced cementless composite were designed. The water to binder ratio was 0.30-0.38, and the amount of polyetylene fiber was 1.75 vol%. A series of experiments including uniaxial tension, density, and compression tests were performed to evaluate the performance of the composites. From the test results, it was exhibited that the composite has superior tensile performance such as high tensile strength and tensile strain capacity compared with other types of composites.

Compressive and Tensile Behavior of Polyetylene Fiber Reinforced Composite According to Silica Sand and Fly Ash (규사 혼입과 플라이애쉬 혼입에 따른 폴리에틸렌 섬유보강 복합재료의 압축 및 인장거동)

  • Kwon, Seung-Jun;Kang, Su-Tae;Choi, Jeong-Il;Lee, Bang-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • The purpose of this study is to investigate experimentally the effect of reinforcement of polyetylene fiber, inclusion of silica sand, and replacement of cement with fly ash on the compressive and tensile behavior of fiber reinforced composite. Five types of mixture proportions were determined and compressive strength and uniaxial tension tests were performed. Test results showed that strength, ductility, and control of cracking were improved by the reinforcement of fiber. Although the strength was improved by the inclusion of dried silica sand, the ductility was reduced and the crack width was increased. On the other hand, the increase of ductility, the decrease of crack width, and the decrease of strength were observed by the replacement of cement with fly ash.