• 제목/요약/키워드: Polyetheretherketone

검색결과 38건 처리시간 0.03초

탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향 (Effect of matrix on fatigue strength of carbon fiber composite materials)

  • 유승원
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

열가소성 수지 복합재료에서의 수지 함침 (The Impregnation of Thermoplastic Resin into a Unidirectional Fiber Bundle)

  • 김태욱;전의진;이우일
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.163-168
    • /
    • 1988
  • Impregnation of molten thermoplastic resin into continuous unidirectional fiber bundles was investigated. The degree of impregnation is defined as the ratio between the number of impregnated fibers and the total number of fibers of a bundle. The degree of impregnation was modeled as a function of time, impregnation pressure, temperature and tow size assuming the radial inward flow through the fiber bundle is governed by the Darcy's law. The permeability was assumed to be constant. Experiments were performed to evaluate the validity of the medel. Today's T300 graphite fiber bundles and Polyetheretherketone(PEEK) resin was used. A fiber bundle and resin powder were put into a mold and pressure and temperature were applied. After a predetermined time, the sample was taken out and microphotographs of the cross-section were taken. From the microphotographs, the number of impregnated fibers was counted and then the degree of impregnation was determined. Experiments were also performed for different tow sizes. Good agreements were found between the model and the experiments rendering a confidence in the model.

  • PDF

CaO-SiO2-PEEK 생체복합체의 제조와 in-vitro 특성평가 (Preparation of CaO-SiO2-PEEK bio-composites and in-vitro Evaluation)

  • 김일용;조성백;김종옥;신종우;이성호;박중근;김택남
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.287-292
    • /
    • 2004
  • A bio-composites were prepared by mechanical mixing with bioactive sol-gel derived $CaO-SiO_2$ and organic PEEK for bone repairing hybrid materials. The composites were characterized by in-vitro test. A bonelike apatite was formed on the surface of all bio-composites in SBF test. The cell morphology and adhesion on the surface of the composites having below 30% PEEK were clearly observed in L929 cell experiment.

Investigation of Single Phase Frictional Pressure Loss in Circular Micro Tubes

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1284-1291
    • /
    • 2006
  • Single phase pressure drops in micro tubes were investigated through an experimental measurement and a numerical simulation. Experimental Po was obtained in circular micro tubes with 87 and $118{\mu}m$ diameter with distilled water. Experiments were carried out in laminar flow region with varying the Re 15-450 for the $87{\mu}m$ diameter tubes and 60-1300 for the $118{\mu}m$ diameter tube. No early transition from laminar to turbulent flow was detected for the experimental range. The computational estimation of pressure drop in the $87{\mu}m$ diameter tube was performed with the aid of CFD software. Boundary conditions from experiments were used for the numerical simulation. The results of experimental and numerical studies showed a good agreement with the conventional macro theory.

국소의치 구조물(framework)의 CAD-CAM 제조방식에 따른 정확도: 문헌고찰 (Accuracy of CAD-CAM RPD framework according to manufacturing method: A literature review)

  • 이유승
    • 대한치과보철학회지
    • /
    • 제59권3호
    • /
    • pp.370-378
    • /
    • 2021
  • 목적: 본 연구의 목적은 CAD-CAM 방식으로 제작한 RPD framework의 제조 과정 및 제작 방법에 따른 적합도를 문헌 고찰을 통해 평가하는 것이다. 재료 및 방법: 다음의 PICO (patient, intervention, comparison, and outcome) 질문과 관련한 특정 키워드를 이용하여 PubMed 데이터베이스 상에서 포괄적인 문헌 검색을 시행하였다: "제조 과정 및 제작 방식에 따라 디지털 RPD framework의 정확도에 차이가 있는가?" 결과: 총 7개의 문헌이 선택되었으며, 이 중 두 문헌에서 구강스캔과 모형스캔을 이용한 디지털 RPD framework의 정확도에 관하여 비교하였으나, 일관된 결과를 얻지 못하였다. 제작 방식에 따른 비교 문헌에서는 적층 가공 또는 절삭 가공을 통해 제작된 RPD framework 모두 임상적으로 허용가능한 수준의 정확도를 보였으며, PEEK (Polyetheretherketone) milling RPD framework가 전통적 주조방식으로 제작하거나 3D 프린팅으로 제작한 RPD framework보다 높은 적합도를 보였다. Milling RPD framework에서는 direct 방식으로 제작한 경우에 indirect 방식의 경우보다 우수한 적합도가 관찰되었으나, 3D 프린팅 RPD framework에서는 indirect 방식으로 제작한 경우에 더 높은 적합도를 보였다. 결론: CAD-CAM 기술을 이용하여 제작된 디지털 RPD framework는 제조 과정이나 방식에 관계없이 임상적으로 허용되는 수준의 정확도를 보였다. 구강스캔 또는 모형스캔의 디지털 인상 채득 방법에 따라서는 일관된 결과가 보고되지 않았으며, 추후 연구가 필요하다.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

Polyaryletherketones (PAEKs)로 제작된 임플란트 유지형 어태치먼트의 유지력 평가 (Evaluation of the initial retention of implant-retained attachments made of dental polyaryletherketones (PAEKs))

  • 박수철;김성민
    • 대한치과기공학회지
    • /
    • 제45권3호
    • /
    • pp.61-66
    • /
    • 2023
  • Purpose: The current study examined the retention and wear resistance of stud-type attachments made of high-performance polyetheretherketone (PEEK) or polyetherketoneketone (PEKK) from the polyaryletherketones (PAEKs) family. Methods: The study sample included 10 PEEK or PEKK attachments that were mounted onto their male parts, designed on the upper aspect of the attachment, with a load of 30 N. Tensile stress was applied using an Instron machine to separate the male and female parts, and the maximum tensile stress to be applied was determined based on the retention force observed. The wear resistances of PEEK and PEKK were evaluated by measuring the inner diameter of the inserted female part 10 times. Results: The maximum tensile stresses of PEEK and PEKK were 56.26±0.58 and 69.12±0.92 N, respectively, with the maximum stress required to remove the PEKK specimens from the abutment being 12.86 N higher than that required to remove the PEEK specimens. Furthermore, PEKK exhibited higher wear resistance than PEEK. Conclusion: This study evaluated custom-made removable implant-retained attachment components for overdentures, wherein the female parts were made of PEEK or PEKK. The retention stress and wear resistance were evaluated based on the type of attachment material, and the results showed that both types of attachment inserts demonstrated clinically acceptable results in terms of retention.

Simultaneous Hard Tissue and Soft Tissue Graft with Dental Implant Placement and Provisionalization: A Case Report

  • Hyunjae Kim;Young-Dan Cho;Sungtae Kim
    • Journal of Korean Dental Science
    • /
    • 제17권2호
    • /
    • pp.84-91
    • /
    • 2024
  • Achieving both esthetic and functional implant rehabilitation is crucial for the successful treatment of the anterior maxilla. Adequate peri-implant alveolar bone and soft tissue are essential for optimal rehabilitation of the esthetic area, and there is a direct association between the implant position and prosthetic outcomes. Immediate provisionalization may also be advantageous when combined with augmentation. This case report described the implant placement in a 25-year-old female patient who had lost her right maxillary lateral incisor (#12) due to trauma-induced avulsion. The treatment involved simultaneous grafting and collagenated, deproteinized bovine bone mineral, along with subepithelial connective tissue taken from the right maxillary tuberosity. A polyetheretherketone abutment and non-functional immediate provisionalization were performed by removing both the proximal and occlusal contacts on the composite resin crown. Clinical and radiographic evaluations revealed maintenance of stable ridge contour aspects for six months following surgical treatment. In summary, implant rehabilitation in the esthetic zone can be successful using simultaneous soft and hard tissue grafts. Moreover, soft tissue stabilization post-subepithelial connective tissue grafting can be achieved through early or immediate visualization, along with immediate implant placement.

수전해용 공유가교 SPEEK 고분자 전해질 막의 전기 화학적 및 기계적 특성 (Electrochemical and Mechanical Characteristics of Covalently Cross-Linked SPEEK Polymer Electrolyte Membrane for Water Electrolysis)

  • 김경언;장인영;권오환;황용구;문상봉;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.391-398
    • /
    • 2007
  • The covalently cross-linked sulfonated polyetheretherketone (CL-SPEEK) membrane was prepared by four-step synthesis of sulfonation-sulfochlorination, partial reduction, lithiation, and cross-linking, and its electrochemical and mechanical properties were investigated for water electrolysis application. The prepared ion exchange membranes showed good electrochemical and mechanical properties; proton conductivity of 0.116 S/cm at $80^{\circ}C$, water uptake of 44.6%, ion exchange capacity of 1.75 meq/g-dry-memb., tensile strength of 64.25 MPa and elongation of 61.11%. The membrane electrode assembly (MEA) with homemade membranes were prepared by non-equilibrium impregnation-reduction (I-R) method. Especially, the electrochemical surface area (ESA) and roughness factor of CL-SPEEK electrolyte by cyclic voltammetry method were 23.46 $m^2/g$ and 307.3 $cm^2-Pt/cm^2$, respectively. The prepared MEA was used in the unit cell of water electrolysis and the cell voltage was 1.81 V at 1 A/$cm^2$ and $80^{\circ}C$, with platinum loadings of 1.31 mg/$cm^2$.