• Title/Summary/Keyword: Polyester Polyol

Search Result 48, Processing Time 0.023 seconds

Toughness of Polyurethane-Modified Unsaturated Polyester Resin (폴리우레탄으로 개질한 불포화 폴리에스테르 수지의 강인성)

  • Hwang, Yeong-Geun;Min, Kyung-Eun;Choi, Gwan-Young;Kim, Woo-Sik;Lee, Dong-Ho;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu;Jun, Il-Ryun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Unsaturated polyester(UP) resin is one of the major thermosetting resins. It is very useful as the matrix resin of the composite material because of its low viscosity. The polymer resin, however, has several drawbacks; The volume shrinkage occurs during the crosslinking reaction of the UP resin with styrene monomer and the resulting polymer is weak to the alkali and also brittle. The mechanical properties of UP resin can be improved by blending various materials. In this study, polyurethane(PU) was used as a modifier in order to enhance the toughness of the UP resin. The goal of the research is to study the effect of the polyol molecular weight as a PU soft segment and the PU contents on the toughness of PU-modified UP resins. UP/PU polymer network may occur through the reaction between isocyanate group in the methyldiisocyanate(MDI) and hydroxyl group in the UP molecules. The maximum toughness value was shown at 2 wt% of the PU content. This effect results from the incorporation of the PU segment into the UP resin.

  • PDF

Preparation and Physical Properties of Two-Component Polyurethane Coatings Containing Alkyd Modified Polyesters (알키드 변성폴리에스테르를 함유하는 2성분계 폴리우레탄 도료의 제조와 도막물성)

  • Shin, Jae-Hyun;Kim, Sung-Gea;Ha, Kyung-Jin;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.907-913
    • /
    • 1997
  • Alkyd modified polyester was synthesized by the polycondensation of 1,4-butanediol, trimethylolpropane, adipic acid, and the intermediate obtained by the esterification of 3,5,5-trimethylhexanoic acid(THA) and trimethylolpropane, where the contents of THA as a component of alkyd polyol in the intermediate were changed according to 10, 20, and 30wt%, respectively. Two-component polyurethane coatings were prepared by blending the synthesized alkyd modified polyester with Desmodur L-75 as a component of polyisocyanate. Various tests for coating properties with the prepared coatings show that high fineness of grind of $8^-$point, short drying time of 2~3 hours, and long pot-life of 18~23 hours were observed with the content of 3,5,5-trimethylhexanoic acid.

  • PDF

Synthesis and Characterization of Waterborne Polyurethane using Nano Zinc oxide (나노 산화아연을 사용한 수분산 폴리우레탄의 합성과 특성)

  • Cheon, Jung Mi;Jeong, Boo Yeong;Yoo, Chong Sun;Park, Duck Jei;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • In this study, waterborne polyurethane (WPU)/nano ZnO was synthesized from various polyester polyols, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), triethylamine (TEA) and ethylenediamine (EDA), nano ZnO. The contents of metal oxide were varied from 0 to 1.0 wt% of total solid. The effects of nano ZnO contents and ionic contents in the WPU/nano ZnO on thermal, mechanical properties were studied. The glass transition temperature ($T_g$) of WPU/nano ZnO do not show a distinct tendency with incorporation of nano ZnO and the $T_g$ of WPU/nano ZnO a little increased with increase of DMPA contents. The tensile strength and 100% modulus increase and elongation at break decreases with increase of nano ZnO contents and DMPA contents.

  • PDF

Synthesis and Characterization of Waterborne Polyurethane Using Nanoclay (나노 클레이를 사용한 수분산 폴리우레탄의 합성과 특성)

  • Cheon, Jung Mi;Jeong, Boo Young;Yoo, Chong Sun;Park, Duck Jei;Bae, Jae Kyu;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Waterborne polyurethane (WPU) which is environment friendly has been rapidly used in coating and adhesive industries. However, the WPU is deficient in chemical resistance, thermal resistance, and mechanical property compared to solvent-based polyurethane. In this study, the WPU was synthesized from two types of polyester polyols, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylolpropionic acid (DMPA), triethylamine (TEA) and ethylenediamine (EDA), organophilic nanoclay. The thermal stability, mechanical property of the WPU nanocomposite dispersion increased with increasing clay concentration. Especially, their peel strength showed their maximum value at 3 wt% of organophilic nanoclay contents.

  • PDF

Synthesis of Polyester Polyols by Using Double Metal Cyanide Catalyst and Physical Properties of Polyurethanes Produced by the Polyols (이중금속시안염 촉매에 의한 폴리에스테르 폴리올 제조 및 이를 이용한 폴리우레탄의 물성)

  • Kim, In-Ki;Seo, Hyun-Sook;Ha, Chang-Sik;Park, Dae-Won;Kim, Il
    • Clean Technology
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • Copolymerizations of propylene oxide (PO) and phthalic anhydride (PA) have been performed in the presence of double metal cyanide (DMC) catalyst as a means of incorporating ester groups in the polyol backbone. DMC catalyst was effective for the copolymerization and the reactivity ratios measured by modified Kelen-$T{\ddot{u}}d{\ddot{o}}s$ equation were $r_1(PA)\;=\;0$, and $r^2(PO)\;=\;0.248$. Four different Polyol samples containing 1.0, 2.1, 7.52, and 11.42 mol% of PA unit were utilized for the synthesis of thermoplastic polyurethanes of their hard segments of 19 wt%. As the incorporated amount of PA increases, the elongation of the resulting polyurethane decreases and the tensile strength and the tensile modulus increase. The modulation of the incorporated amount of PA into polyol backbone was proven to be a feasible way to tune the physical properties of polyurethanes.

  • PDF

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

Synthesis and Properties of Polyurethane/Clay Nanocomposites Containing Siloxane Segment (실록산 세그먼트를 가진 폴리우레탄/점토 나노복합체의 제조 및 물성에 관한 연구)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.177-182
    • /
    • 2005
  • Montmorillonite (MMT) modified with siloxane diamine was reacted with a reactant obtained from 4,4'-diphenyl methane diisocyanate (MDI) and polyester type polyol, $Nippollan4010(\bar{M}_n2000)$. Finally, polyurethane (PU)/MMT composites were prepared by using 1,4-butane diol as a chain extender in $25\;wt\%$ solution of N,N-dimethyl acetamide (DMAc). It was expected that these nanocomposites had superior exfoliation property to that of MMT dispersed polyurethanes produced by simple mixing due to insertion of siloxane main chain to the silicate interlayer of MMT. Extent of reaction and formation of final products were analysed by using FT-IR spectroscopy. Dispersion into the PU and intercalation of MMT were identified by applying X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile data were acquired by universal test machine (UTM). Thermal stability and variation of surface energy were characterized by thermal gravimetric analysis (TGA) method and measurement of contact angle on the synthesized composites, respectively. As the results the organo-MMT modified with siloxane diamine in the PU composites has an intercalated structure relatively well-expanded rather than a completely exfoliated structure. The tensile strengths and the moduli for the PU/organo-MMT composites were drastically enhanced in comparison to those of $PU/Na^+-MMT$ composites.

Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts (젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구)

  • Eom, Se Yeon;Lee, Hyeong Il;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. $234^{\circ}C$, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. $271^{\circ}C$, respectively. The kinetic parameters were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant $k_0$ increased. But in the case of PO catalyst, $k_0$ did hardly depend upon its amount, and showed us similar reaction rate constants.