• Title/Summary/Keyword: Polycyclic aromatic hydrocarbons (PAHs) degradation

Search Result 31, Processing Time 0.03 seconds

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.

Biodegradation of Polycyclic Aromatic Hydrocarbons by White Rot Fungi (백색부후균을 이용한 다환방향족 탄화수소(PAHs) 의 분해)

  • 류원률;서윤수;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.262-267
    • /
    • 2000
  • The white rot fungi Phanerochaete chrysosporium(IFO 31249) Trametes sp and Pleurotus sp. were studied for their ability to degrade Polycyclic Aromatic Hydrocarbons(PAHs) using anthracene and pyrene as model compounds. The disapperarance anthracene and pyrene of from cultures of wild type strains. P chrysosporium Trametes sp. and Pleurotus sp was observed However the activities of ligninolytic enzymes were not detected in P chrysosporium cultures during degradation while ligninolytic enzymes were detected in both culture of Trametes sp. and Pleurotus sp. Therefore our results showed that PAHs was degraded under ligninolytic as well as nonligninolytic conditions. The results also indicate that lignin peroxidase(LiP) mananese peroxidase(MnP) and laccase are not essential for the biodegradation of PAHs by white rot fungi.

  • PDF

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

Proteomic Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) Degradation and Detoxification in Sphingobium chungbukense DJ77

  • Lee, Soo Youn;Sekhon, Simranjeet Singh;Ban, Yeon-Hee;Ahn, Ji-Young;Ko, Jung Ho;Lee, Lyon;Kim, Sang Yong;Kim, Young-Chang;Kim, Yang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1943-1950
    • /
    • 2016
  • Polycyclic aromatic hydrocarbons (PAHs) are commonly present xenobiotics in natural and contaminated soils. We studied three (phenanthrene, naphthalene, and biphenyl) xenobiotics, catabolism, and associated proteins in Sphingobium chungbukense DJ77 by two-dimensional gel electrophoresis (2-DE) analysis. Comparative analysis of the growth-dependent 2-DE results revealed that the intensity of 10 protein spots changed identically upon exposure to the three xenobiotics. Among the upregulated proteins, five protein spots, which were putative dehydrogenase, dioxygenase, and hydrolase and involved in the catabolic pathway of xenobiotic degradation, were induced. Identification of these major multifunctional proteins allowed us to map the multiple catabolic pathway for phenanthrene, naphthalene, and biphenyl degradation. A part of the initial diverse catabolism was converged into the catechol degradation branch. Detection of intermediates from 2,3-dihydroxy-biphenyl degradation to pyruvate and acetyl-CoA production by LC/MS analysis showed that ring-cleavage products of PAHs entered the tricarboxylic acid cycle, and were mineralized in S. chungbukense DJ77. These results suggest that S. chungbukense DJ77 completely degrades a broad range of PAHs via a multiple catabolic pathway.

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.

The Influence of Yellow Sand Phenomena on the Concentration Variation of Polycyclic Aromatic Hydrocarbons in Ambient Air of Seoul (황사가 서울시 대기 중 PAHs 농도에 미치는 영향)

  • 박찬구;어수미;기원주;김기현;모세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.179-192
    • /
    • 2001
  • In order to characterize the distribution patterns of PAHs between Yellow Sand (YS) and non-Yellow Sand(NYS) periods, we collected and analyzed aerosol samples for PAHs for the periods covering 28 March through 24 April 2000. The concentrations of TSP measured during the YS periods were approximately two times higher than the NYS periods. By contrast, the concentrations of PAHs during YS were higher than those of NYS by 140%. In ad-dition, their concentrations in PM 10 were larger than those TSP by 120% . Detailed inspections of our data indi-catd that three species including chrysene. benzo(b)fluoranthene, and benzo(k)fluoranthene were effeciently ad-sorbed by particles less than 10${\mu}{\textrm}{m}$ diameter and that there were dominating the distribution characterstics of PAHs during the YS periods. Results of correlation analysis also indicated that PAHs exhibited strong correlations with those pollutants originating from combustion sources. It is thus concluded that pollutants such as toxic PAHs that originate from diverse anthropogenic sources of China should be contributing to the degradation of the ambient air quality in Seoul.

  • PDF

Estimation and Characteristics of Atmospheric Deposition Flux of Polycyclic Aromatic Hydrocarbons (PAHs) into the Masan and Haengam Areas of Korea (마산과 행암 지역으로 유입되는 다환방향족탄화수소(PAHs)의 대기 침적 플럭스 산정과 특성)

  • Lee Su-Jeong;Moon Hyo-Bang;Choi Min-kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.121-131
    • /
    • 2006
  • Atmospheric bulk (wet and dry) samples were monthly collected in Masan and Heangam areas of Korea, to assess the deposition flux and seasonal variation of polycyclic aromatic hydrocarbons (PAHs). Deposition fluxes of PAHs in bulk samples were determined using gas chromatography coupled to mass spectrometer detector (GC/MSD). Particle deposition fluxes from Masan and Haengam areas varied from 13 to $87\;g/m^2/year$ and from 5 to $52\;g/m^2/year$, respectively. PAHs deposition fluxes in atmospheric bulk samples in Masan and Haengam areas ranged from 135 to $464\;{\mu}g/m^2/year$ and from 62.2 to $194\;{\mu}g/m^2/year$, respectively. Atmospheric deposition fluxes of particles and PAHs in this study were comparable to or slightly lower values than those from different locations in Korea and other countries. PAHs profiles of atmospheric deposition bulk samples showed slightly different from two sampling areas, however the predominant species of PAHs were similar. Indeno (1,2,3-c,d)pyrene, benzo(g,h,i)perylene, phenanthrene compounds were the most detected PAHs in deposition bulk samples. Carcinogenic PAHs occupied the contribution of approximately $30-40\%$ of the total PAHs deposition fluxes. The non-metric multi-dimensional scaling (MDS) was used, to assess the differentiation of PAHs source between two sampling areas. The result suggests that PAHs contamination sources were different according to the location and season surveyed. There was no an apparent relationship between the PAHs deposition flux against temperature and rainfall amount, even though summer season with the highest temperature and the largest amount of precipitation showed the lowest PAHs deposition flux. Benzo(e)pyrene/benzo(a)pyrene ratio indicated that the photo-degradation process was one of important factors to the seasonal variation of PAHs with the lower deposition fluxes.

Sensitivity Analysis of the CMB Modeling Results by Considering Photochemical Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Seoul atmosphere (서울 대기에서 PAHs 광화학반응을 고려한 CMB 수용모델 결과 검토)

  • Cho, Ye Seul;Jung, Da Bin;Kim, In Sun;Lee, Ji Yi;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Several studies have been carried out on the source contribution of the particulate Polycyclic Aromatic Hydrocarbons (PAHs) over Seoul by using the Chemical Mass Balance Model (CMB)(Lee and Kim, 2007; Kim et al., 2013). To confirm the validity of the modeling results, the modified model employing a photochemical loss rate along with varying residence times and the standard model that considers no loss were compared. It was found that by considering the photochemical loss rate, a better performance was obtained as compared to those obtained from the standard model in the CMB calculation. The modified model estimated higher contributions from coke oven, transportation, and biomass burning by 4 to 8%. However, the order of the relative importance of major sources was not changed, coke oven followed by transportation and biomass burning. Thus, it was concluded that the standard CMB model results are reliable for identifying the relative importance of major sources.

Molecular Detection of Catabolic Genes for Polycyclic Aromatic Hydrocarbons in the Reed Rhizosphere of Sunchon Bay

  • Kahng Hyung-Yeel;Oh Kye-Heon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.572-576
    • /
    • 2005
  • This study focused on detecting catabolic genes for polycyclic aromatic hydrocarbons (PAHs) distributed in the reed rhizosphere of Sunchon Bay, Korea. These marsh and mud environments were severely affected by human activities, including agriculture and fisheries. Our previous study on microbial roles in natural decontamination displayed the possibility that PAH-degrading bacteria, such as Achromobacter sp., Alcaligenes sp., Burkholderia sp. and Pseudomonas sp. play an important decontamination role in a reed rhizosphere. In order to gain further fundamental knowledge on the natural decontamination process, catabolic genes for PAH metabolism were investigated through PCR amplification of dioxygenase genes using soil genomic DNA and sequencing. Comparative analysis of predicted amino acid sequences from 50 randomly selected dioxygenase clones capable of hydroxylating inactivated aromatic nuclei indicated that these were divided into three groups, two of which might be originated from PAH-degrading bacteria. Amino acid sequences of each dioxygenase clone were a part of the genes encoding enzymes for initial catabolism of naphthalene, phenanthrene, or pyrene that might be originated from bacteria in the reed rhizosphere of Sunchon Bay.