• Title/Summary/Keyword: Polycarboxylate

Search Result 86, Processing Time 0.024 seconds

INFLUENCE OF SURFACE TREATMENTS OF DENIAL ALLOYS ON BOND STRENGTH OF GLASS IONOMER AND POLYCARBOXYLATE CEMENT (치과용 합금의 표면 처리가 글라스아이오노머 시멘트와 폴리카르복실레이트 시멘트의 결합력에 미치는 영향)

  • Lee, Heon-Woo;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.125-142
    • /
    • 1996
  • Bond strength of four different cements to dental casting alloys which were treated with #600 emery, tin-plating, and $50{\mu}m$ sandblasting were evaluated. The alloy specimens were Type III Gold alloy(Degulor C), Palladium-Silver alloy(Pors on 4), Nickel-Chromium(Rexillium III) alloy, which were embedded in acrylic resin disc. The specimens were treated with #600 emery and tin plating, #600 emery and sandblasting, then bonded using Fuji I, Ketac Cem(Glass ionomer cements), Poly F, Livcarbo(Polycarboxylate cements). The specimens were immersed in water for 24 hours and shear bond strengths were evaluated by Instron Machine. Tin plated, sandblasted, and debonded alloy surfaces were observed using scanning electron microscope. On the basis of this study, the following conclusions could be drawn. 1. In the tin plated alloy group, increase in bond strength of glass ionomer cements was statistically insignificant. 2. In the tin plated alloy group, increase in bond strength of polycarboxylate cements was statistically significant, except nickel-chromium alloy. 3. Sandblasted alloy group showed higher bond strength than that of tin-plated alloy group.

  • PDF

A STUDY ON THE RETENTIVE CAPABILITY OF CAST POST CEMENTED WITH SOME DENTAL CEMENTS (수종 치과용 시메트에 의한 주조 포오스트의 유지력에 관한 연구)

  • Lee, Chang-Ho;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1988
  • An in vitro study was performed to compare the retentive value of cast post cemented with three commonly used cements and one composite resin. Twenty cast posts were made from twenty extracted lower premolars. The samples were randomly divided into four groups. The first group was cemented with zinc phosphate cement, the second group with polycarboxylate cement, the third group with glass-ionomer cement, and the fourth group with composite resin. The tensile load test was performed on an Instron testing machine with crosshead speed of 2 mm/min and the results were compared statistically. The results were as follows ; 1. The mean value of tensile break force of cemented cast post was 23.36Kg in case of zinc phosphate cement, 16.28Kg in case of polycarboxylate cement, 22.09Kg in case of glass-ionomer cement , and 26.88Kg in case of composite resin. 2. Retention was not significantly different among zinc phosphate cement, glass-ionomer cement and composite resin. 3. Polycarboxylate cement was found to be less retentive than zinc phosphate cement, glass-ionomer cement , and composite resin.

  • PDF

SHEAR BOND STRENGTH OF LUTING CEMENTS TO DENTIN TREATED WITH RESIN BONDING AGENTS (레진접착제를 도포한 상아질에 대한 합착용 시멘트의 전단결합강도)

  • Kim, Kyo-Chul;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.26-49
    • /
    • 1998
  • The purpose of this study was to confirm the formation of hybrid layer and resin tags in dentin tissue and the possibility of bonding between luting cements used for the prosthesis and the resinous surface coated with resin bonding agents to prevent the dentin hypersensitivity after abutment preparation. Some resin bonding agents, which may have the possibility of bonding with polyacrylic acid as a liquid ingredient of polycarboxylate and glass ionomer cements, were selected. All-Blond desensitizer containing NTG-GMA and BPDM, Scotch-Bond Multipurpose plus containing HEMA, and XR-bond containing organophosphate were selected as a coating agent. Dental cements were zinc phosphate, polycarboxylate, and glass ionomer cement. After the exposed dentin surface of premolars was ethced with 10% phosphoric acid and coated with resin bonding agents, the morphology of treated surfaces and the resin tags and hybrid layers on sectioned surfaces were observed by SEM. Shear bond strength between the resin bonding agents and 3 kinds of cements was measured 24 hours after bonding. On the debonded surfaces of the shear bond strength tested specimens, the cement tags and the bonding sites between the resin materials and cements were examined by SEM. Following conclusions were drawn : 1. Coating of dentin with resin bonding agents had no effect on the shear bond strength of zinc phosphate cement. 2. Both of polycarboxylate and glass ionomer cements showed the increased shear bond strength by the dentinal coating with Scotch-Bond Multipurpose plus containing HEMA. However, in the case of dentinal coating with some agents containing NTG-GMA and BPDM or organophosphate, polycarboxylate cement exhibited the lowered shear bond strength, and glass ionomer cement showed the unchanged shear bond strength. 3. Complete obstructions of dentinal tubules were observed on the dentin coated with All-Bond desensitizer or XR-bond, but distinct shape of the orifices of dentinal tubules was observed consistently on the dentin coated with Scotch-Bond Multipurpose plus. 4. The hybrid layer was thickest on the dentin coated with All-Bond desensitizer, and the length of resin tags was longest on the dentin coated with Scotch-Bond Multipurpose plus. 3. On the debonded specimens which had been bonded with polycarboxylate cement or glass ionomer cement after coating with Scotch-Bond Multipurpose plus, the cement tags and the bonding sites between the resinous surface and the cements could be examined.

  • PDF

Characterization of Recycled Coarse Aggregate (RCA) via a Surface Coating Method

  • Ryou, J.S.;Lee, Y.S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2014
  • Recycled coarse aggregate (RCA) made from waste concrete is not a suitable structural material as it has high absorption of cement mortar, which adheres on the aggregate surface and on the tiny cracks thereon. Therefore, when using RCA made from waste concrete, much water must be added with the concrete, and slump loss occurs when transporting. Hence, its workability is significantly worse than that of other materials. In this study, surface of RCA was coated with water-soluble polycarboxylate (PC) dispersant so that its characteristics improved. Each possibility was evaluated: whether its slump loss can be controlled, by measuring its workability based on the elapsed time; and whether it can be used as a structural material, by measuring its strength. Moreover, the carbonation due to cement mortar adhesion was measured through a carbonation test. As a result, RCA coated with PC dispersant was found to be better than crushed coarse aggregate and RCA when the physical properties of the fresh concrete and the mechanical, durability of the hardened concrete were tested.

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Effect of PC(Polycarboxylate)-type Superplasticizer on the Hydration Reaction of Cement Paste (PC(Polycarboxylate)계 고유동화제가 시멘트 수화 반응에 미치는 영향)

  • Chae, Eun-Jin;Shin, Jin-Yong;Suh, Jeong-Kwon;Hong, Ji-Sook;Kim, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.533-536
    • /
    • 2006
  • PC-type copolymers were synthesized using MPEG(Polyethylene glycol methyl ether methacrylate, Mn=2080) to different mole ratios of mono-carboxylic acid(AA : Acylic acid). The mole ratios of AA were 2, 3, 4. To investigate effects of PC-type co-polymers on the hydration of cement, experiments involving FT-IR, XRD, SEM have been analysed with cement paste specimens to 1, 3, 28 day. The hydration reaction rate of cement paste was slightly delayed at 1 day, due to increase in molar ratio of [AA] / [MPEG], it was recovered in the days after.

  • PDF

Synthesis of High-Performance Polycarboxylate(PC)-Type Superplasticizer, and Its Fluidity and Hydration Behavior in Cement Based-System (폴리카복실레이트계 고성능 유동화제의 합성과 시멘트계 내의 유동 및 수화 반응 거동)

  • Shin, Jin-Yong;Chae, Eun-Jin;Hong, Ji-Sook;Suh, Jeong-Kwon;Hwang, Eui-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.77-80
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers(PCs) which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction and investigated the chemical structure, polymerization condition, and physical and chemical properties. Also, the effects of PCs in the dispersion, adsorption and hydration of cement were evaluated. As the molecular weight of graft chain decreases, the adsorption amount on cement particles increased. It was advantageous for the flow to reduce molar ratio, the lower the side bone molecular weight, and increase the molar ratio, the larger the side bone molecular weight. The hydration reaction speed was highly delayed at day 1, due to increase in molar ratio and reduction in side bone molecular weight, but it was recovered in the days after.

  • PDF

An Experimental Study on the Effects of Polycarboxylate Superplasticizer on the Fluidity Properties of Cement Pastes with POFA (POFA를 혼입한 시멘트 페이스트의 유동특성에 폴리카르본산계 감수제가 미치는 영향에 관한 실험적 연구)

  • Wi, Kwang-Woo;Jeong, Seong-Min;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.137-138
    • /
    • 2016
  • Palm Oil Fuel Ash(POFA),which is burned in palm oil factories to get energy and gathered, has been studied in many countries due to its chemical properties. However POFA has high value of LOI and lots of pores on its particle surface. Therefore, in this study, POFA's fluidity were confirmed by mini-slump test and plastic viscosity test. Through the results, fluidity of POFA reduced according to the replacement ratio of POFA because of high value of LOI and its pores on surface and plastic viscosity of POFA increased. In addition, when superplasticizer was added, fluidity increased due to the steric effect of polycarboxylate superplasticizer.

  • PDF

A Study of Marginal Leakage on Various Filling Materials (수종충전재의 변연누출에 관한 실험적 연구)

  • Lee, Yoon-Sang;Kim, Hong-Suk;Park, Ka-Myung
    • The Journal of the Korean dental association
    • /
    • v.11 no.5
    • /
    • pp.337-340
    • /
    • 1973
  • The authers have studied the marginal leakage on various filing materials : Composite resin, Polycarboxylate cement, Zinc phosphate cement, Silicate cement and Zinc-oxide eugenol cement, by means of penetration of 2% aquous methylene blue between cavity walls and filing materials at body temperature and at thermal changs in the range of 4~60℃ The results revealed as follows. 1) All the filling materials revealed the penetration of dye between cavity walls and filling materials. 2) Zinc-oxide eugenol cement was the most effective to prevent the dye penetration on the contrary silicate cement cases showed greatest leakage at 37℃ and at temperature changes in range of 4-60℃. 3) The composite resin showed moderate leakage either at 37℃ or at thermal changes 4) Marginal obstructions of polycarboxylate cement were unsatisfactory at 37℃ and at temperature changes.

  • PDF