• Title/Summary/Keyword: Polybutylene terephthalate

Search Result 25, Processing Time 0.021 seconds

Contact Stress Analysis of Stick Type Ignition Coil Jacket PET (Stick Type Ignition Coil Jacket PET의 접촉응력 해석)

  • Kim Yang-Sul
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.1-6
    • /
    • 2005
  • Stick type ignition coil is new development that connect directly with ECU(Electronic control unit), without needing a spark plug cable and distributor. Glass-fiber reinforced ploymeric composites provide the desirable properties of high stiffness and strength as well as low specific weight. Stick type ignition coil jacket is using PBT CF30 resin. PBT CF30 resin is a kind of electric insulation which is a superior engineering plastic that is used to prevent the leakage of the electrical current. If PET receive a mistake of design or excessive force when HV terminal oppress on jacket, it can happen to crack. Local stress concentrations occurring on the contact surface, the contact phenomenon becomes a direct cause to the wear and failure of mechanical structures. When it is cracked, it can allow a leakage of the electrical current. So, in this study, we analyze the contact stress to PBT jacket using ANSYS program, when HV terminal oppress on jacket. We suppose PBT to be Jacket and we analyzed contact stress that happens in PET like PBT analysis method. We compared the use of PBT and PET.

Investigation of the Part Shrinkage in Injection Molding for Class Fiber Reinforced Thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo J.-H.;Lyu M.-Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.515-521
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts fur PBT (polybutylene terephthalate), PC (polycarbonate), and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkages of PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

Analysis of Variations in the Bonding Strength Characteristics of the AL6061-PBT-Polymer Composite with Injection Parameters (AL6061과 PBT 재료의 인서트 사출공정조건에 따른 접합강도 특성 분석)

  • Jung, Yong-Jun;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.135-141
    • /
    • 2021
  • As a trend of lightening automobiles and electronic products, several studies are currently underway to replace parts of metals with resins. In particular, heterojunctions between metals and resins are now under the spotlight. This study aims to evaluate the variation in bonding strength with process conditions when the polybutylene terephthalate (PBT) polymer is bonded to a specimen of the lightweight 6061 aluminum alloy (AL6061). Conditions of the bonding surface of the AL6061 specimen, the temperature of the injection mold, and the content of the glass fiber were considered to be process variables. Bonded specimens were manufactured for different values of these variables. Bonding strength tests were then performed on these specimens and variations were analyzed in their characteristics corresponding to those of the process conditions. Fractures in these specimens were assessed using scanning electron microscopy (SEM) to assess the fracture surface. This was then used to analyze the fracture shape and determine whether anodizing the specimen led to the development of cracks on the joint surface. Results of the above test indicated that while the surface condition of the specimen and the temperature of the injection mold significantly influenced the strength of bonding, the content of the glass fiber did not.

Case Study on Determination of the Level of New RoHS II Substances in Domestic Electronic and Electrical Equipments (국내 전기전자 제품에 함유된 신규 RoHS II 물질 검출 사례 연구)

  • Song, Moon-Hwan;Son, Seung-Hwan;Cho, Young-Dal;Choe, Eun-Kyung
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2011
  • In addition to six substances regulated in EU RoHS including lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), priority substances are identified in new RoHS II as hexabromocyclododecane (HBCDD), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and diethylhexyl phthalate (DEHP). In this study, 20 plastic samples were collected from 12 domestic electrotechnical companies and levels of four restricted substances were determined by gas chromatography-mass spectrometry, Among 20 parts that compose washer, refrigerator or microwave oven, HBCDD was detected in three samples of NBR material with the amount of 42~381 mg/kg while DBP and BBP was not detected in any samples collected respectively, implying that these substance may not be used widely in plastic materials for EEE. However, DEHP was detected in all samples of NBR, PP, PBT, EPDM and PVC materials with the amount of 42 up to 59,400 mg/kg that exceeds the limit value of 0.1 wt% (1,000 mg/kg). Presence of a restricted substance in polymer material makes a great negative influence on a number of final product. To cope with coming RoHS II as well as REACH, action not to use DEHP in plastic material or the relevant notification in case of REACH seems to be needed. Screening test of Arsenic compounds such as diarsenic pentaoxide, diarsenic trioxide, lead hydrogen arsenate, triethyl arsenate that are included in REACH SVHC was done by ICP measurement Arsenium was detected in four samples made of NBR and PBT materials in the level of 15~700 mg/kg. By considering the screening method used in this study, the amount of arsenium compounds in the thermistor made of PBT material has a high chance of exceeding the regulated limit value.