• Title/Summary/Keyword: Polyamine depletion

Search Result 3, Processing Time 0.019 seconds

Effect of Polyamine Biosynthesis InhibItion on the Microbicidai and Jumoriddal Activities in Mouse Macrophage (생쥐 대식세포의 감염균 치사활성과 종양 치사활성에 미치는 Polyamine 생합성 억제의 영향)

  • 이준백;정노팔
    • The Korean Journal of Zoology
    • /
    • v.34 no.2
    • /
    • pp.173-180
    • /
    • 1991
  • The objective of this experiment was to examine the effect of polyamine depletion by polyamine biosynthesis inhibitors on microbicidal activity and tumoricidal activity in mouse mac-rophages. $\alpha$ -Difluoromethylomithine (DFMO), inhibitor of putrescine and spernidine biosynthesis, treatment in vivo for 6-8 days reduced chemiluminescence levels in thioglycollate-, lipo-polysaccharide (LPS), and BCG-treated mouse macrophages. An DFMO treatment in vitro inhibited production of tumor necrosis factor (TNF), in dose-dependent manner, and tumoricidal activity by macrophages. The effect of polyamine depletion by MO on ThF production and tumoricidal activity could be reversed by the addition of exogenous putrescine. These result indicated that the obserbed effect of DFMO on macrophage activities were mediated through inhibition of polyamines are, must be, required for optimal activities of macrophages.

  • PDF

Inhibition of Myoblast Differentiation by Polyamine Depletion with Methylglyoxal Bis(guanylhydrazone)

  • Cho, Hwa-Jeong;Kim, Byeong-Gee;Kim, Han-Do;Kang, Ho-Sung;Kim, Chong-Rak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • The role of polyamines in skeletal myoblast differentiation was investigated using the polyamine metabolic inhibitor methylglyoxal bis(guanylhydrazone)(MGBG). Concentrations of intracellular free spermidine and spermine increased 2 to 2.5-fold at the onset of myoblast fusion. The systhesis of actin, and creatine kinase activity both dramatically increased during myotube formation. However, MGBG at a concentration of 0.5 mM not only abolished the increase of intracellular free polyamines, but also reduced cell fusion to almost half the level of untreated cells, without noticeable morphological alteration. The production of actin, and creatine kinase activity were almost completely abolished by MGBG. The inhibition of myoblast fusion by MGBG was partially recovered with 0.1 mM of spermidine or spermine added externally. Results indicate that polyamines are necessary for normal myoblast differentiation. Since the first indication of myoblast differentiation is alignment of muscle cells and membrane fusion of adjacent cells, and since polyamine depletion completely inhibited the synthesis of actin, which might be associted with membranes, polyamine might be involved in myoblast differentiation through membrane reorganization events.

  • PDF

Synthesis and Characterization of Polygamies and Their Metal Complexes

  • Jang, Gyu-Hwan;Kim, Yang;Lee, Man-Kil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.346.3-346.3
    • /
    • 2002
  • The polyamine pathway represents a logical target for chemotherapeutic intervention, since depletion of polyamines results in the disruption of a variety of cellular functions, and may in specific cases result in cytotoxicity. Polyamine interaction with DNA has also long been thought to be an important function of the natural polyamines and as more is learned about the specific interactions and the resultant conformational changes which can be influenced by the polyamine binding to DNA the potential for regional and gene-specific changes are becoming more evident. We have prepraed the elaborate polyamines by the reaction of simpler polyamines with polyalkyating agents. Synthesized polyamines were separated and purified by metal complex formation and ion-exchange chromatography. They were characterized by X-ray crystal structure determinations of their metal complexes.

  • PDF